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P r e f a c e  

The two volume set "Lectures on QCD" provides an introductory overview of 
Quantum Chromodynamics, the theory of strong interactions. In a series of artic- 
les, the fundamentals of QCD are discussed and significant areas of applications 
are described. Emphasis is put on recent developments. The field-theoretic basis 
of QCD is the focus of the first volume. The topics discussed include lattice gauge 
theories, anomalies, finite temperature field theories, sum-rules, the Skyrme mo- 
del, and supersymmetric QCD. Applications of QCD to the phenomenology of 
strong interactions form the subject of the second volume. There, investigations 
of deep inelastic lepton-nucleon scattering, of high energy hadronic reactions 
and studies of the quark-gluon plasma in relativistic heavy ion collisions are 
presented. 

These articles are based on lectures delivered by internationally well known 
experts on the occasion of a series of workshops organised by the "Graduierten- 
kolleg on Strong Interaction Physics" of the Universities of Erlangen-Niirnberg 
and Regensburg in the years 1992-1995. The workshops were held at "Kloster 
Banz'. Kloster Banz is a former monastery overlooking the valley of the river 
Main and still serves, for some days of the year, as the stage where certain canons 
and orthodoxies are vigorously formulated. 

Inspired by the atmosphere of the site, the workshops were set up with the 
aim of introducing novices in the field to the basics of QCD. Accordingly, the 
character of the lectures was pedagogical rather than technical. With the or- 
ganisation of these workshops we have attempted to establish a new form in 
graduate education. Graduate students of the "Graduiertenkolleg" constituted 
a large fraction of the audience. They have worked out these articles on QCD in 
collaboration with the lecturers. 

Thanks are due to Jutta Geithner for technical help in the preparation of 
these proceedings. The support of the "Graduiertenkolleg" by the Deutsche For- 
schungsgemeinschaft was instrumental in this endeavor and is gratefully acknow- 
ledged. 

Erlangen, January 1997 F. Lenz 
H. W. Griel3hammer 
D. Stoll 
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Fascinating Field Theory: 
Quantum Field Theory, Renormalization 
Group, 
and Lattice Regularization* 

P. Hasenfratz 1 ; 
Notes by F. Kleefeld 2 and T. Kraus 2 

1 Institute for Theoretical Physics, University of Bern, Siedlerstrasse 5, 3012 Bern, 
Switzerland 

2 Institute for Theoretical Physics, University of Erlangen-Ntirnberg, Staudtstr. 7, 
91058 Erlangen, Germany 

1 I n t r o d u c t i o n  

Quantum field theory gives a unified prescription of physical phenomena where 
collective behaviour plays an important  role. This collective behaviour is inde- 
pendent of the microscopical details and can lead to mind-boggling phenomena 
such as dynamical mass generation, spontaneous symmetry breaking, confine- 
ment, etc. The main purpose of these lectures is to communicate our fascination 
about the way quantum field theories work. 

In the introduction we try to explain and motivate some of the notions ente- 
ring the title of these lectures and answer a few 'why questions' concerning the 
subject. 

1.1 W h y  F ie ld  T h e o r y  (As O p p o s e d  to  P o i n t  M e c h a n i c s ) ?  

In most of the interesting problems in physics a large number of degrees of 
freedom axe involved. Very often we are not interested in the individual motion 
of one of the degrees of freedom, but rather in the collective phenomena created 
by the correlated motion of a large number of variables. 

Consider a pendulum, for example. Its motion is a simple problem in clas- 
sical mechanics. If we consider many of them coupled by springs, modes might 
occur which involve the coordinated, correlated motion of all the degrees of free- 
dom (waves). For these kinds of phenomena a field theoretic description is very 
natural. 

* Lectures presented at the workshop "Lattice QCD and Dense Matter" organised by 
the Graduiertenkolleg Erlangen-Regensburg, held on October l l th-13th, 1994 in 
Kloster Banz, Germany 
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Fig. 1. Collective phenomena. 

1.2 W h y  Q u a n t u m  Field Theory  (QFT) (Ra the r  T h a n  Q u a n t u m  
Mechanics  (QM))  for the  Collective Exci ta t ions?  

In microphysics, the birth and death, the creation and anmhilation of excitations 
(particles) is a basic feature, which is observed everywhere. 

Take for example the absorption and emission of a photon by an atom. QM 
already has problems with this relatively simple example, especially with induced 
emission) There are, however, high energy scattering events where the number 
of produced particles lies in the hundreds, even in the thousands. QM works with 
normalized wavefunctions and the associated interpretation excludes the possi- 
bility of particle creation and annihilation. We need a prescription with states 
of an arbitrary number of exitations and with the possibility to communicate 
between them. This is just what QFT provides us with. 

1.3 Why Lattice Regularization? 

Some of the mathematical operations which enter the definition of a QFT require 
a careful limiting procedure. In field theory, the variables are associated with 
space-time points. These variables have some kind of self-interaction, whereas 
the elementary interaction between different degrees of freedom is over infinite- 
simal distances as expressed by derivatives. Already in the classical theory, the 
definition of a derivative requires the temporary introduction of a finite incre- 
ment (of the argument of the function considered) which disappears at the end 
by some limiting procedure 

f ' ( x )  = lim f ( x  + a) - f ( x )  (1) 
a--~O a 

Similarly, the very definition of a QFT requires the temporary introduction of a 
defining framework called regularization, which disappears from the theory by a 
limiting process. The way to introduce and remove the regularization is a highly 
non-trivial problem. 

Accepting the fact that we need some regularization scheme - why should 
we resort to lattice regularization? Let us mention some of the reasons. 

1 Strictly speaking, it does not belong to the realm of QM. 
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- In general, in any problems which require numerical analysis (e.g. integrals, 
partial differential equations, . . .  ), the standard procedure is to introduce 
meshes. Also the path integral can be defined in a natural way by introducing 
meshes. Consider the probability amplitude for the propagation of a particle 
from the coordinates (x~, t~) to  (xf,tf) in QM: 

K(xl,tl;x,,t,) = Z e'S"(=('))' (2) 
all paths 

where Sd is the classical action and the sum extends over all paths connecting 
the points (x~, t~) and (xf, t f) .  The sum over all paths in equation (2) can 
be defined by introducing a space-time lattice (see Fig. 2)). 

X 

Xf 

X l 

/ 

// 

/ 

t ,  t ) 

Fig. 2. Paths on a space-time lattice. 

- Lattice regularization overcomes some of the shortcomings of other sche- 
mes. Lattice regularization is defined non-perturbatively, unlike, for exam- 
ple, dimensional regularization which can only be applied in the context of 
perturbation theory. 
Lattice regularization is very convenient for gauge systems, or for theories 
with constrained variables. Choosing a momentum cutoff, the constraints 
may become very cumbersome. Consider for example the non-linear a model, 
where the spins lie on a unit sphere: S(x) z = 1. This constraint is simple 
in configuration space, but complicated in momentum space. Even worse, a 
momentum cutoff violates gauge invariance. 

1.4 W h y  Renorma l i za t i on  Group?  

We begin with a slight detour, asking ourselves about the common feature of 
all field theories (QCD, QED, electro-weak interaction, ~4, . . . ) .  Their most 
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important common property is locality. Locality means that the elementary in- 
teraction in the action takes place only between infinitesimally separated points. 
On the other hand, we are interested in finite correlation lengths of the systems 
described by field theories. In QCD, for example, we want to obtain a correlation 
length of the order f m ,  which is the typical scale for hadronic objects. Therefore 
some miraculous thing has to happen that ensures we obtain a finite correlation 
length at the end in the solution (in the Greens functions), despite the fact that 
the distance of our basic interaction in the action approaches zero. Collective 
behavior is needed to overcome this paradox. 

Let us look at the relevant scales in momentum space (Fig. 3). We are inte- 
rested in some region of physical momenta which is well below the cutoff. The 
predictions in this physical region are influenced by by the high momentum mo- 
des also. At first sight this seems to be a problem, since we do not know what 
the elementary interaction between, say, an electron and a photon at the cut-off 
should look like. For the field theoretical prescription to be successful we need 
the results of the theory in the physical region to be independent of the details of 
the interaction near the cutoff (i.e. independent of the details of the interaction, 
or of the regularization scheme). This property, called universality, is produced 
typically by the collective motion of a large number of degrees of freedom. This 
is the property which allows us to calculate the anomalous magnetic moment of 
the electron to many digits precision in spite of our limited knowledge on the 
form of the interaction at very high energies. 

physics regularization dependent scrap 
~ _ ~  energy or 

momentum 
l/a scale 

Fig. 3. Momentum scales. 

It would be useful to define a procedure which eliminates the uninteresting 
degrees of freedom at high momenta, but takes into account their effect on 
the remaining variables exactly. This procedure is the renormalization group 
transformation (RG). RG ideas not only provide a deep insight into the way 
QFTs work, on properties like universality and renormalizability of a theory, 
but they lead to powerful quantitative methods also [1]. 
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2 Q u a n t u m  Fie ld  Theor i e s  ( Q F T s )  Versus  Cr i t i ca l  
Phenomena in Classical Statistical Physics 

2.1 Formal Re la t i on  B e t w e e n  QFTs and  Classical Sta t is t ical  Physics  

Consider an n-point function in QFT in Minkowski space, with ~(x) as the 
generic field 

(O IT (~(x~),~(x2),...,~(x,)) [0). (3) 

In path integral language this expression is equal to 

f D4f4f(Xl)~(x2)... ~(xn) exp (i f+:  dt f ~  dx £(4~, (0u~)) 
eq.(3) = 

Z 

where Z = f D ~  exp (i f dt f dxZ:) is the normalization and x = (t,x) 
(t, Xl,..., Xd.). For the Lagrangian £ we might take 

da 

i = 1  

(4) 

(5) 

For many reasons it is helpful to perform an analytic continuation and go to 
Euclidean space, 

t =Xo -4 --ixd 

i / dt / dx -4 / ddx (6) 

where d = d8 + 1. By Wick rotation, the relative minus sign between the time 
and the spatial derivatives disappears, 

and we get 

Z= f D exp ( - f  ddxE( ,O )) , (8) 

(~(xa)~(x2). 4~(x,~)) = fD4~¢(Xx)~(x2)"'4~(xn) exp(-- f ddx£) (9) 
*" Z 

Equations (8,9) are nothing but the partition function and correlation functions 
for a system in classical statistical mechanics. The QFT of fields in ds space 
dimensions is transformed - by continuation to Euclidean space - into classical 
statistical physics of fields in d = ds + 1 Euclidean dimensions. The Euclidean ac- 
tion plays the role of E/kBT, where E is the classical energy of the d dimensional 
system. 
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2.2 Mass (Gap) m, Correlation Length 

The n-point (correlation) functions also determine the spectrum of the theory. 
Take (in Minkowski space) the operator in the Heisenberg picture 

~( t ,  O) = e ~ n t ~ s e - i n t ,  (10) 

where ~s is the field operator in the SchrSdinger picture at the space point O. 
Then 

< 01 &(t, o) &(0, o) I 0 > = ~ e -icE"-E°)t (01 &s I n >5, (II) 
n 

where we have used the closure relation 

1= E ln>(n{ (12) 
n 

for the energy eigenstates { n ) of the system. If we perform the analytic conti- 
nuation to Euclidean space, we obtmn 

t --~ --iXd 

(0 I ~(t,0)~(0,0) I 0 ) --+ E e  - (E"-E°)xd  ICnl ~ . (13) 
n 

If the state ~s I 0 ) is orthogonal to the groundstate I 0) then 

{ 01 ~(t, o) ~(t, o) 10 > ~,-~?o e_~S~, tcl f~, 
A E  = E1 - Eo - mdf .  (14) 

The dimensionful quantity rod! is the mass gap in the channel of ~. As rnd! 
determines how fast the correlator in (14) falls off as a function of Xd, the inverse 
of mdy can be identified with the correlation length ~d/: 

1 
- - .  (15) 

~ = m~/ 

Note again that m4e and ~a! are dimensionful physical observables and their 
physical units are given by: [m~] = g , [~/] = cm. 

2.3 QFTs  Versus Cri t ical  P h e n o m e n a  

There is a deep similarity between the problems of a QFT and those of critical 
phenomena. For illustration, consider a large piece of magnet. The magnet is 
built of atoms forming a lattice structure with a lattice distance a ,,~ O(/~). At 
a given generic temperature T > To, the net magnetization is zero, the distance 
over which the magnetic spins are correlated (correlation length) is of the order 
of the lattice spacing (see Fig. 4 on the next page). Let us tune the tempera- 
ture towards the critical temperature where where spontaneous magnetization 
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I II 
o 

Con'. length = 3a ~ 3 A 
I ~  I I Ih , . . _  I 

T approaches T 
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Magnet under reducing glasses 

o 

Corr. length = 30 a - 30 A 

v 

solid state physicist 

Fig. 4. Solid State Physics versus Field Theory. 

sets in. In approaching To, the correlation length gets larger and larger, several 
hundreds of lattice units (hundreds of As), and beyond. A field theorist  looks 
at this problem through his special glasses. These are reducing glasses. Through 
his glasses, the original lattice unit and correlation length is O ( l f m ) .  This is a 
trivial rescaling. It is more important  that  the field theorist increases the redu- 
cing factor of his glasses in such a way that  through his glasses, the correlation 
length stays the order of l f r o  even when the tempera ture  gets close to the Curie 
point (see Fig. 4). For the solid state physicist, the correlation length approao 
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ches macroscopical distances, while looking through the increasingly reducing 
glasses of the field theorist, the correlation length remains constant, but the 
lattice becomes increasingly fine grained. At the Curie point, the field theorist 
obtains a continuum field theory (a --+ 0) with finite O(1 fro) correlation length. 
His colleague has a lattice with fixed lattice unit (a ... 1/~) and macroscopical 
correlation length. It is clear, however, that the main difficulty - obtaining and 
controlling the large scale collective behavior - is a common problem for them. 

3 R e n o r m a l i z a t i o n  G r o u p  ( R G )  T r a n s f o r m a t i o n  

We shall discuss RG transformations both in momentum and in configuration 
space. The systematic elimination of large momentum (short distance) fluctua- 
tions is done by: 

- t h i n n i n g  o u t  the variables 
- re labeUing a n d  resca l ing  the remaining variables 

The momentum space regularization with a sharpe cutoff is conceptually simple 
and it is well suited to explain the steps of a RG transformation. For a free 
field theory and in leading order of perturbation theory it leads to a technically 
simple problem. We start our discussion with this case. In general, however the 
sharpe cutoff creates difficulties. In addition, momentum space regularization is 
not suited for contrained and gauge systems, as we discussed before. All these 
problems are avoided by using a regularization in configuration space. In the 
second part of this section we discuss RG transformations in this context. In 
the following the notation • (x) is used for a scalar field, ~ (k) for its Fourier 
transform: 

4~(x) = f e  -iax ~(k) , 
J k  

using the following abbreviation for the d-dimensional integration in Euclidean 
momentum space: 

= 

3.1 R G  Trans fo rma t ion  in M o m e n t u m  Space 

We choose a cutoff in momentum space: 

Ikl ~ A cut 

The next step is to express everything in terms of d i m e n s i o n l e s s  quantities in 
units of the cutoff, i.e. introduce the dimensionless momentum variable q : 

k, 
q~ - Acut ~ Iql <-- 1 , 



k2, k3, ... 
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= A cut 

Fig. 5. Considered range of momentum. 

and the dimensionless field variables ~o (q) : 

(q) = # ( k ) .  (A cut) ~ 

The generating functional in Euclidean space then reads 

Z = H f d ~ ( q )  e - S ( ~ )  (16) 
Iql_<l J 

The idea is now to integrate out in a cascading procedure the irrelevant high 
momentum parts of the degrees of freedom in Z to come down to relevant mo- 
mentum scales which determine physics. The cascading procedure is done as 
follows. One splits up the fields ~ (q) into two parts, ~o(q), which is defined in 
the region [ql -< ~ , and ~ol(q), which is defined in the region ½ < Iql -< 1 : 

~a (q) ---- ~0(q) + ~ol(q) (17) 

Iql_<½ ½<lq[_<l 

Integration over ~ol (q) ("thinning our') leads to the effective action S (~o0) : 

Z = H / d~o(q) H J d~l(q)e-S(~°° + ~1) = 
]ql~½ ½_<lqt_ <1 

= II fd o(q) e -~ (~°° )  
Iql_<½ 

Now one replaces the dimensionless momentum q by q' = 2q ("relabellin]') 
where 

0 < Iq'l < 1 
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I 

q, 

Fig. 6. Range of q (The shaded reg/on is integrated out by one RG transformation 
step.). 

This leads to the following change in the field variables ("rescaling"): 

~,(q,) = ~--1 ~o0(q) (18) 

const 

For the generating functional one obtains 

Z = H /&P'(q')e-S'(~°') -~ H /d~°(q)e-S'(~°) 
Iq'[_<l Iql_<l 

(19) 

In the second step primed fields and integration variables were just replaced by 
unprimed symbols. The net effect of the RG transformation between eqs.(16) 
and (19) is just the following change in the action: 

s s'@) 

The low energy (long distance) correlations remain unchanged by the RG trans- 
formation as one can check (Iqtl, Iq21 << 1): 

< ~a (ql) ~o (q2) >Is = 

1 / = -~ ~ d~°(q)~o(ql)~o(q2) e-S(~°) = 
lql_<l 



1 / 
= -Z H &Po(q) ~oo(ql)~oo(q2) H 

Iql~_½ ½<lql<l 
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/ d{pl (q) e - S @ °  + ~01) = 

11 

i / 
Z H &Po(q) CPo(ql)~Po(q2)e -~(~°°)  eq.=(18) 

Iql<½ 

= 1Z ~2 H / & P ' ( q ' ) ~ ° ' ( 2 ) ~ ° ' ( 2 ) e - S ' ( ~ ° ' )  
[q'l<l 

We thus have the following expression for the correlation function 

< cp (ql) ~o (q2) 

~ 6(ql+q2) a(2)(ql)ls 

= ~2< cp'(2ql)cp'(2q2) >Is' 

~6(2q lT2q2)  G(") '(2ql)[s , 

Using (f(2 q) = 2-d5(q) one obtains the relation for the two point Greens func- 
tions: 

G(2)(q) s = ~2 2-d G(2)'(2q) s '  (20) 

If the propagator has a pole at q2 = _ m  2 (m is measured in A cut units, m << 1), 

i.e. G(2)(q) -,~ (q2 + m2) -1 , then the pole will be shifted by the RG transforma- 
tion to the position m' = 2 m ,  as 

1 1 1 GC2)'(q) ..~ ..~ ,., 
(2i)2 + m  2 q2 + (2m) 2 q2 + (m')2 

Although the dimensionful mass rod! = ra • A cut and so the dimensionful cor- 
relation length ~a/ "~ (mdf) -1 is not changed by the RG transformation, we 
have the following changes for the action S (~o), the dimensionless mass ra, the 
dimensionless correlation length ~ ~- m - t  and the cutoff A cut itself: 

s 

RG rn ---+ 2 m 

2 

ACUt 
A cut ~ (21) 

2 
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3.2 R G  T r a n s f o r m a t i o n  in C o n f i g u r a t i o n  S p a c e  ( L a t t i c e )  

We shall consider a d dimensional  hypercubic lattice in Euclidean space. The 
field ~ is defined on the lattice points n, where n is a d dimensional  vector of 
integers. On the lattice the generating functional Z is written as: 

= II  f @= e-S(~) , Z (22) 
J 

n 

where n runs over all lattice sites. A RG transformation in configuration space 
averages out the short distance fluctuations, i.e. f luctuations over distances O(a), 
where a is the lattice unit. We form blocks on the lattice labelled by the block 
index n z  (see Fig. 7). To every block we associate a block variable ~',  which is 

site labelled by "n" 

~ -  a - - ~  : o  • 

K a'! 

block labelled by "na" 

( K a' 

RG) 

Fig. 7. Lattice before and after block transformation. 

an average of the original fields in the block. Integrating over the fields qo keeping 
the block averages fixed, Z is expressed in terms of a functional integral over the 
block fields: 

1 

== H f + - H  f +'oo =<+o. ~ E ~o)e-=<+ : 
n n B  B E n B  

= II f+'. .  H f +-  =<+.= -~ E ~->,-=<+ = 
n B  n n E n B  

= 1-[ f d+'.= e-S'(¢) , 
n.B 
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where 

e-S ' (~ ' )  = 1-[ / d~ ,  6(~',8 - b ~ ~,1 e -S(~)  (23) 
n nEnB 

Here n B  extends over all blocks, b is a free parameter at this stage, which corre- 
sponds to the rescaling parameter ( in (18), and S'(~ t) is the resulting effective 
action after performing the block transformation. The lattice unit a ~ (ACUt) -1 
transforms under the considered RG transformations as: 

RG a t 
a ) 2 a =  

The dimensionful and dimensionless correlation length transforms as in (21): 

2 

Let us close this section by discussing a basic assumption of the RG theory. 
The constrained functional integral in (23) seems to be technically more com- 
plicated than the original functional integral for Z. How the RG idea can help 
then to get quantitative predictions out of the model considered? The point is 
that functional integrals, or partition sums are not always very difficult. Con- 
sider for example a classical statistical system at very high temperatures. The 
partition sum (and other quantities) can be calculated to high precision by using 
the technique of high temperature expansion. The physical reason that such an 
expansion works is that at high temperatures the system has short range fluc- 
tuations only. The partition sum becomes really difficult to calculate at tempe- 
ratures when the system has long range fluctuations, when collective behaviour 
occurs, when many terms in the partition sum contribute to the final result es- 
sentially. The functional integral in (23) is not expected to be difficult in this 
sense. The constraints expressed by the 6-functions are expected to disrupt the 
long-range fluctuations of the system. Actually, this is a basic assumption of the 
RG theory: the integrals over the high momentum (short distance) components 
of the system define a non-critical problem with short distance fluctuations only. 

4 F i x e d  P o i n t  ( F P ) ,  B e h a v i o r  i n  t h e  V i c i n i t y  o f  a F P  

Let us see, how the action is changed by RG transformations. The transformed 
action S'(~'), in general, will contain all kinds of different interactions, even if 
the original action S (~) had a simple form. 

To begin with, we take an action of the general form 
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where Oa(~) (a = 1, 2, . . . )  denotes all kinds of different interaction terms like 

(24) 
and Ka are the corresponding dimensionless couplings Call coupling constants 
can be made dimensionless by multiplying with a suitable power of the cutoff 
A Cut ). The transformed action S'(~') is also expanded in terms of these inter- 
action terms 

= Z K" 

Thus, under repeated RG transformations the set of all couplings and the corre- 
sponding dimensionless correlation length changes step by step in the following 
manner: 

{Ka} ~ {K'}  ~ {K~} RG " - "  

RG) .~ RG RG 
2 ~ 2 ~ >''" 

The RG transformation can have fixed points {K~} (FP) in the space of couplings 
which have the property 

R G  {g~} ~ {g~} 

As the dimensionless correlation length has to decrease at each RG step, at a FP 
it has to be infinity, i.e. ~ = oo (the other possibility ~ = 0 is not interesting for 
us). A set of points in the space of couplings Ks,  where ~ = ~ , forms a hyper- 

surface which is called critical surface. Since ~ Ra) ½ ~, an RG transformation 
drives the point {K~} away from a critical surface, except when (Ks} is on the 
critical surface. 

Let us consider now the behavior of the action under RG transformations in 
the vicinity of a FP: Assume there is a FP {K~} on the critical surface. Take 
a point {Ka} in the neighborhood of the fixed point, i.e. AKa = Ks - K~ is 
small. Perform now an RG transformation 

RG t * {Ks} - - - +  {K'}  , A K ' = K  a - K  a 

We can now express AK~ in terms of AKa by an expansion 

0 AK~ ({K*}).AK~+O ((AK) 2) AK~ = AK~ ({K}) = ~K~  -({K*}) + E 

0 

A RG transformation which takes only into account the linear term of this A K -  
expansion, is usually called linearized RG transformation. With the definition: 

T,~ - OK~O AK~({K}) K = K *  
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the equation can be rewritten considering only the linear term in the A K -  
expansion 

AK~ = Z T ~  AKz  

Diagonalization of TaB gives the eigenvectors h a (a -- 1, 2 . . . .  ) and the corre- 
sponding eigenvalues Aa 2. We distinguish three cases: 

- IRal > 1 : The eigenvalue is called relevant. 
_ ]Aa] = 1 : The eigenvalue is called marginal. 
- IAal < 1 : The eigenvalue is called irrelevant. 

The reason for these names is the following. Using the notat ion 

ha(~) = Z h~ 0o(~) , 

the action can be expanded in the eigenbasis ha(4~): 

s (~) = s ' (~)  + ~ c a h a(~) , 
a 

where c a are the corresponding expansion coefficients. Repeated application of 
RG transformations changes the action close to the FP in the following way: 

s (+) R~ s*(+) + ~ ~° c ° ha(+) - ~  s '(+)  + ~ ( ~ o ) 2  co ha(+) R~ ... 
G a 

What  one sees is tha t  on one hand there is a part  S*(~) in the action, which 
is unchanged by successive RG transformations. S*(~) is called the fixed point 
action. On the other hand, the interaction terms associated with an irrelevant 
eigenvalue, the so called irrelevant interactions or irrelevant operators are sup- 
pressed by each RG transformation step, while terms associated with a relevant 
eigenvalue (relevant interactions or relevant operators) are enhanced. For terms 
belonging to marginal eigenvalues it is not immediately clear what will happen. 
One has to look to higher order terms in the AK--expansion which determine 
whether the corresponding interaction term will be suppressed or enhanced by 
RG transformations or whether this property remains in higher orders also im- 
plying the existence of a fixed line rather than a fixed point. 

Let us consider for illustration the d = 3 (= 2 + 1) scalar field theory (see 
Fig. 8). Analytical and numerical results suggest the following scenario. Two 
FPs (FP (1) and FP  (2)) can be identified which have to lie in the critical plane. 
FP (2) is positioned at the origin of the coupling space. This FP is called the 
Gaussian FP. The Ganssian FP  itself (here and in models with other field con- 
tent) describes massless free field theories, but  its neighbourhood might reveal 
more interesting physical properties. As one can see in Fig. 8, at each FP there 

2 Actually, this step requires more care: T~Z is not a symmetric matrix, in general. 
For the associated technical complications see, for example, ref. [1]. 
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K, 

Critical Surface (~ = ¢x~) 

Fig. 8. Coupling space and RG trajectories of the d = 3 scadar FT. 

are a t t ract ive (irrelevant) and repulsive (relevant) eigendirections with respect 
to RG transformations.  At both  fixed points there is a relevant direction running 
out of the critical surface. In addition, there is one t ra jectory leading from the 
Gaussian FP (FP (2)) to FP (1). This shows tha t  the dimension of the basin of 
a t t ract ion of FP  (2) is one less than  the one of FP  (1). Tha t  implies tha t  in order to 
reach the basin of a t t ract ion of FP(2) one has to tune one additional parameter .  

The  number  of different fixed points in a d dimensional scalar field theory 
grows as d is decreased towards 2. On the other hand, in d = 4, there is only 
one FP identified until now. 

5 G a u s s i a n  F P  

5.1 T h e  G a u s s i a n  F P  in S c a l a r  F T s  

In the last section it was mentioned that  in four Euclidean dimensions (d = 4 = 
3 +  1) only one FP can be identified for a scalar FT. This FP is the Gaussian FP 
which exists in any dimension. The Gaussian FP has an enormous importance,  
especially in QFTs,  so we shall investigate its properties in some detail. To 
identify the Gaussian FP in scalar FTs,  we s tar t  with a simple Gaussian scalar 
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theory, i.e. an action which is quadratic in the field 

1 ~ A°u' 
(k) ~ ( - k )  15(k) S= ~ =o 

Here 15(k) is a general function which can be expanded in increasing powers of 
k: 

15(k) = +o + 1 " Z k**k** + & k**k** + ~ k**k**k**k** + . . . .  

convention! ~,=1 \**=1 ,,=1 

By rescaling the integration variable # (k) in the path integral one can arrange 
that the coefficient of the term ~ ,  k** k,  is 1. We shall take this convention. As 
in Sect. 3 we then introduce dimensionless quantities with the help of the cutoff 
ACUt 

k** Iql-< 1 
q**-  Acut , 

~p (q) = ~ (k) • (A cut) ~-~ 

p (q) = 15 (k) • (A cut)-2 

ro = +o" (ACUt) -2 

a : & - ( a ~ u t )  2 

/3 : /3. (ACUt) 2 

yielding 

~o (q) ~ (-q) p (q) S= ~ =o 

( 
P 

Now we perform an RG transformation as in Sect. 3.1. The generating functional 
is / {1/1 } 

= ~o (q) ~o ( -q )  p (q) Z = Dqo(q) e -S(~O) H qo(q) exp - ~  :0 
lq}_<l 

Following the steps in Sect. 3.1 we split the fields and the action in low and high 
momentum parts 

~(q)-= ~oo(q) + ~1(q) 

0_<lql<_½ ½_<[ql <1 

s (~o + ~i) = s (~o) + s (~i) , 
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where the last equation is valid for quadratic actions only. Integration over ~ol 
gives for the generating functional (up to a multiplicative constant) 

Z = const .  H ~oo(q) exp - ~  ~oo(q)~oo(-q)p(q) = 
iql< ½ =o 

= c o n s t -  H qo'(q') exp - C 2  -d ~o'(q')qo'(-q')p( ) = 
iq, l< 1 '=o 

= const- H /d¢(q') e -S ' (q° ' )  
Iq'l<l 

As usual we rescaled the dimensionless momenta  and fields: 

~o'(q') = ff-l~oo(q) , q' = 2q , 0_< Iq'l < 1 

So we have 

s (~) - ~  s '(~')  = ~ ,=o ~'(q') ~ ' (-q ' )  p ( ) 

{ } 1 E quq~, + q~,q~, + /3 quq~,quq~, + =I22 -d" r o + ~  . ~ a  -.. 

To satisfy the convention that  the coefficient of the ~-~ quq~-term in the action 
should be 1 we choose 

¢ = 2  ~-~ 

yielding 
R G  , i  = 4 2 R G  ro ~ r ~ = 4 r o - ~  ro r0 - - ~ . . .  

~ , = 1  _~, ,  (¼)5 R G  
~ O l  = Oc ~ . . .  

/3 =(¼) ~ ~ . . .  

We see that  the only relevant operator  in the action is the one with the coefficient 
r0 (eigenvalue: A = 4), all other interactions are irrelevant, i.e.: 

ro relevant A = 4 
a irrelevant I = x_ 
13 irrelevant A -- ~ 
all other irrelevant ]A] < 1 
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On the critical surface ( ro = 0) repeated RG transformations lead to an FP  
action which is of a free scalar FT  of massless (4 = oo) particles: 

(q) qo ( -q )  p" (q) s*@)= ~ =0 

p*(q) = q~ 

5.2 Classification of  Operators in the Vicinity of  the Gaussian FP 

In the previous section we considered couplings which are quadratic in the fields. 
Let us generalize this by considering an extended coupling constant space in the 
vicinity of the Gaussian FP. Add for example to the Ganssian FP  action some 
terms like: 

/ ,  / -  

L [ ~ ' ( x )  , i 6 / ~ ( x )  , . . . .  
d z  

This leads in momentum space (using again dimensionless variables and coup- 
lings to, ,~4, As (<< 1)) to following terms in the action 

i l  
S = 2 (q2 + to) qo (q) ~o ( -q )  + 

-~- "~4 fq~...O, qo (ql) qo (q2) qo (q3) ~ (q4) 6(q1 + q2 + q3 + q4) + 

f 
+ A6 ] qo (ql) . . .  qo (q6) 6(ql + .-. + q6) + 

Jq 1-.-q6 

For simplifying the algebra and notations let us keep those terms only which are 
explicitely written out above./ .From this expression a straightforward calculation 
gives the following transformation behavior of the coupling close to the Gaussian 
FP: 

RG r0 ) (to + 6 A4 c + 15 A6 c 2) ~2 2-d 

)~4 RG (~4 -[- 15 A6 c) ~4 2 - 3 d  

A6 nG ~6 i6 2-~d 

with 

fk 1 C = k 2 + ro =½ 

The RG eigenvalues A ~ and the eigenvectors h a of this linear transformation are 
therefore (the last column shows the engineering dimension of the highest power 
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in the  eigenvector) 

)~(1) = 22 
A(2) = 24-a 
A(3) -- 26-2d 

h(U = 4f~ 
h (2) = 414 -P a ~i2 

h (3) _=_ ~ili6 + bl 4 ~4 + 192 ~2 

d im~2(x )  = d -  2 
d im ~54 (z) = 2d - 4 . 

d i m ~ 6 ( x )  = 3d - 6 

The  general  result  can be s ta ted  as: 

To every simple operator O(x) with engineering dimension do there 
corresponds an eigenoperator, whose highest dimensional element 
is O(x) , and the corresponding eigenvalue is: 

A o = 2 d - do 

Some examples  are shown in Table 1 In 3 and 4 Eucl idean dimensions the re- 

Tab le  1. RGeigenvaluesfor a scalar field theory 

O(z) do ~o 

• 2(x) d - 2  4 

O4(z) 2d-4  24-d 

O6(x) 13d- 6 2 e-zd 

1 (0 5 ~ (~ ) )2  i d + 2 

suit above leads to the following s ta tements  concerning the relevance of special 
opera tors  in linear order  in the A K - e x p a n s i o n :  

d = 3 O ( ~ K )  

~2 , ~4  r e l e v a n t  

~6 margina l  

all o ther  opera tors  irrelevant 
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d = 4 O(AK) 

~2 relevant 

~4 marginal 

all other operators irrelevant 

The fate of the marginal operators ~6 (d = 3) and ~4 (d = 4) is decided by the 
O ((zig) 2) terms. In both cases they become weakly irrelevant. 

5.3 A Br ie f  Discussion on the  Yang Mills Interaction 

If the form of the RG transformation respects the symmetries of the original 
action, then the action after the transformation will also have these symmetries. 

It might happen that a symmetry of the theory is broken by the regulariza- 
tion. If the corresponding symmetry breaking interactions have no projection to 
the relevant, or marginal directions of the RG transformation, then the symme- 
try is automatically regained in the continuum limit. The term proportional to 
fl in p in the previous section gives an example for this possibility: this rotation 
symmetry breaking perturbation dies out in the infrared (continuum) limit. 

In contrast, if a gauge symmetry is broken, the corresponding non-gange 
invariant interactions will be relevant and the gauge symmetry will not come 
back automatically in the continuum limit. In fact, at the Ganssian fixed point 
there exist several non-gauge invariant relevant (marginal) operators in d = 4 
Yang-Mills theory (A = eigenvalue of RG transformation), e.g. 

O(AK) 

A~A~ relevant ()~ = 4) 

a a b b marginal(~ 1) A~A~A~A~ = 

O~A~,A,,A~, marginal (~ = 1) 

If one restricts oneself to gauge invariant operators, it turns out that the lowest 
dimensional gauge invariant operator: 

F~vF~ with do = 4 

is marginal to first order and becomes weakly relevant to second order in the A K -  
expansion, while all other gauge invariant operators are irrelevant. The coupling 
g which is associated with this operator is the only interaction which survives the 
infrared limit. This coupling is growing as the momentum scale is decreased and 
the other way around ("asymptotic freedom"). The simple topology of the coup- 
ling space for d = 4 (gauge invariant) Yang-Mills theory is displayed in Fig. 9 
where g, cl, c2, . . .  denote the relevant and irrelevant couplings respectively. 
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el  

C 2  ~ C3 ,~ . o ,  

N 

Renormalized Trajectory (RT) 

(GFP = Gaussian Fixed Point) 

) ~-1_ g2 

Fig. 9. Gaussian Fixed Point in d = 4 Yang-Mills theory. 

6 T h e  P e r f e c t  L a t t i c e  R e g u l a r i z e d  F r e e  S c a l a r  T h e o r y :  

T h e  P e r f e c t  L a p l a c e  O p e r a t o r  

Methods related to the RG theory are among the most powerful tools to attack 
difficult non-perturbative problems in statistical physics and field theory. There 
is now way to give even an overview on those methods and results. We shall 
rather discuss a specific application hoping that it is sufficiently interesting to 
raise your interest for digging deeper into the subject of RG. We shall discuss 
the possibility to construct perfect actions on the lattice. What 'perfect' means, 
what is it good for and what this has to do with RG - this is our subject now. 

Take, for concreteness, the d = 2 Euclidean space continuum action 

2 f x  s = d2x Z (25) 

The standard way to put this theory on the lattice is to replace the derivative 
by a discrete difference. Suppressing the lattice unit dependence ('a = 1') one 
obtains: 

f 1 2 

/~--=- 1 
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2 1 ( ~ n + ~  - ~ n )  2 
[ ! Z J 2 ,u=l n,/2 

(26) 

where ~ is the unit vector in 1 or 2 direction. This corresponds to the Laplace 
operator on the lattice 

2 
A latt ice di~ 
--standard~V ]n  = 4~. - E (~n+a + 4~"-~) " 

t~=l 

(27) 

This is the familiar 4 , - 1 , - 1 , - 1 , - 1  rule for the lattice Laplace operator. It 
is clear, however, that Alattice is only an approximation to the continuum ~ s t a n d a r d  
Ac°nt = ~--]~tJ OgOt~' and by solving ~standardxAtattice 4i = 0 the predictions will be dis- 
torted. For small a, the distortion is O(a 2) plus possibly boundary effects which 
can even produce O(a) corrections. 

-1 

-1 4 -1 

Fig. 10. Standard Laplace operator on tbe lattice. 

Similarly, the corresponding field theory gives predictions which are conta- 
minated by lattice artifacts. To see this explicitely, we determine the spectrum 
which in the continuum is 

/ f f__ ~° d2k eiklzleik2x2 
dxa e-iV~D~°"t(zx, z2) = dz~ e -~p~ ~ (2~r) z k~ + k~ 

~o dk2 e ik2z2 

= oo 2 f+kg 

= l e - l P l z ' ,  (28) 
2p 

where D c°nt is the Greens function in the continuum (obeying AC°ntDC°'~t(xx, x2) 
= 5(xl). 5(x2)) and f dxl e -ipz' projects into the momentum= p channel. Com- 
paring this with the expected behavior of the propagator 

f dxl e-iPZlDC°nt(xl, x2~oo e_~2~(p), (29) X2) 

one observes the expected dispersion relation E = [p[. 



24 P. Hasenfratz 

Things will change, however, if we consider the propagator for the standard 
lattice Laplace operator (see e.g. [2]). By calculating the lattice action in Fourier 
space 

1 f~ d~k l Z 2 (~n+~ -- ~n) 2 = (2'n') 2 2 Z (eik" -- 1) (e - ik" -- 1) ~(k)#(-k) 
n,t2 n 

= 2 ~ si~ 2 # ( k ) 6 ( - k ) ,  (30) 

one can read off the propagator for AU, ttice Reintroducing a and dimensionful ~ s t a n d a r d "  
momenta, one gets for the propagator for small k (k < <  1): 

1 1 
_ (31) 

, ~ ,  sin 2 + 

This corresponds to the dispersion relation 

E(p) = IPl + O(P 3) (32) 

for the standard lattice action for small [Pl. The O((pa)-terms represents lattice 
artifacts. As one can see in Fig. 11 the standard lattice dispersion relation 

E(p) 
/ 

i lattice free FT 

> 
n 0 x p -~- ~- 

Fig. 11. Dispersion relations for continuum theory and standard lattice theory. 

approximates the continuum relation very well for small IPl but gets very bad 
near the edge of the Brillouin zone. 

It might sound surprising, but there exists a lattice version of the free sca- 
lar theory which is free of lattice artifacts and most notably, it gives back the 
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exact spectrum of the continuum theory. This formulation - by construction - 
defines a perfect Laplace operator  on the lattice. Even more, this perfect lattice 
representation of the model is sufficiently simple to be interesting in practical 
calculations. 

This perfect action is the FP action of the model related to some RG trans- 
formation on the lattice. To find this action, let us start  with a general quadratic 
form in d = 2 dimensions: 

1 
Z p(r) ¢ . ¢ . + r ,  (33) S=~ 

where p(r) are the coupling constants and n -- (nl,n2), r = (rl,r2). The RG 
transformation 

n n B  n 6 n B  

(34) 

is generalized by introducing the free parameter  a in the following way 

( ( ) }  (i Xns 4 Z ¢"  ---+ exp - 2 n  X-s 4 e.B 
n E n s  

In the limit a -~ oo we recover the (f-function blocking, for finite ,¢ it is a 
(legitime) generalization. We then obtain 

-2n X-,, 4 Z ¢'~ " (36) 
n 6 n s  

The problem is to find a a specific set of couplings p* (r) such that  if p(r) = p* (r), 
then p'(r) = p*(r) as well (fixed point). Since we have to perform Gaussian 
integrals only, this problem is comparatively easy to solve and we will only give 
the result in Fourier space 

1 
i(q) - ~, (q 

where I = (Io,/x) 

and p*(r) = f _ i  ( ~ e ' q ' F ( q ) ,  

i 1 sin 2 q~ 1 

+ ~ ' 0  ~ = ( 9  + ' a , )  ~ + ~ '  

is an integer vector and E = 
1 

q = (ql ,  q2). 

oo o~ 

Z Z 
lO ~----C<) [I------00 

(37) 
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One can calculate the spec t rum for this perfect  Laplace opera tor  and one obtains  
the  as tonishing result  t ha t  it is exact.  Not  only t h a t  it is exact  in the Bril louin 
zone, but  the full spec t rum is obtained.  One finds a tower of poles when doing 
the  integrat ion in the k2-plane. The  dispersion relat ion reads 

E = [ p +  2r/11, where ll = 0 , + l , = k 2 , . . . .  (38) 

Therefore  we obta in  the  full con t inuum spec t rum as shown in Fig. 12. 

- ~  0 

E(p) 
x • i 

g 

) 
P 

Fig.  12. Dispersion relation for the perfect Laplace operator on the lattice. 

Tab le  2. The couplings of  the quadratic two-spin interaction terms at a distance 
r = (to,r1) for the optimal choice of  the block transformation with ~ = 2. Note that in 
our convention, for the standard action the only non-vanishing entry in this list would 
be PST(1,O) : --1. 

,- p(,-) 
(1,0) -0 .61802  
(1,1) -0.19033 
(2,0) - 1 .998 .10  -z  
(2,1) -6.793 • 10 -4 
(2,2) 1.625.10 - 3 .  
(3,0) - 1 .173 .10  -4 
(3,1) 1.942.10 -s  
(3,2) 5.232- 10 -5 
(3,3) -1 .226-10  -5 

,- , ( , - )  

(4,0) -2.632 - 10 -6 
(4,1) 7.064- 10 -7 
(4,2) 1.327- 10 -8 
(4,3) -7 .953-  10 -7 
(4,4) 6.895 - 10 - s  
(5,0) -8.831 - 10 - s  
(5,1) 3.457- 10 - s  
(5,2) 3.491 -10 - s  
(5,3) -3 .349 .10  - s  
(5,4) 8 .408-  lO -9  
(5,5) -1.657 • 10 -1° 

The  propert ies  (most  no tab ly  the  in terac t ion range) of  p(r)  depend on the  
free pa ramete r  ~. The  choice ~ ~ 2. is op t imal  in the sense tha t  p(r) decays very 
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rapidly with growing Ir[, like ~ exp(-3.44]r[) .  For this choice p(r)  is strongly 
dominated by the nearest neighbor and diagonal couplings while the couplings 
at distance > 1 are already small. As Table 2 (taken from [3]) shows, p(3, 3) is, 
for example, 5 orders of magnitude smaller than the nearest neighbor coupling. 
The choice ~ -- oo (corresponding to a block transformation with J-function) 
gives a considerably larger interaction range, p(r) ,,- exp(-1.45[rJ).  

7 P e r f e c t  L a t t i c e  A c t i o n  i n  A s y m p t o t i c a l l y  F r e e  T h e o r i e s  

In this section we illustrate the idea of improved lattice actions. As Yang-Mills 
theory or QCD in 4 dimensions are technically quite complicated, we choose as 
a toy model the non-linear a model in d --- 2 dimensions for which more details 
can be found in [3]. 

7.1 I n t r o d u c t i o n  t o  t h e  N o n - l i n e a r  ~r M o d e l  

The continuum action of the O(3)-symmetric non-linear a model in Euclidean 
space is given by 

2 

s~°"t = ~2 f a~ Z 0.~(x) 0.~(x), 
/a=l  

with the constraint : 4i2(x) = 1, (39) 

where 4 i is a 3-component vector and 13 = I / g ,  the coupling constant g is di- 
mensionless. 

This model has some features common to Yang-Mills theories in 4 dimensions: 

- The theory is asymptotically free in g. 
- The dynamics of the system generates a mass gap m. We obtain a triplet of 

particles with mass m. 
- Classical instanton solutions exist with scale invaxiant actions. 

This model has a long history, as this interesting, but relatively simple theory is 
an excellent testing ground for theoretical and numerical ideas. 

On the lattice one obtains the standard formulation of the action (39) by 
replacing the derivatives with nearest neighbor differences, 

slattice = --i ~ (~"+~' - ~n)2 = -~ Z ~n'f'n+~. + CO~St, s t a n d a r d  
n,~ n,~ 

(40) 

where n = (nl ,n2)  labels the lattice sites and /2 is the unit vector in 1 or 2- 
direction. 
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7.2 T h e  R e n o r m a l i z e d  C o u p l i n g  g~ 

An interesting problem is to calculate the renormalized coupling 9~(L) for this 
model, where L is some physical length scale. For small L (L < <  -~) this can be 
done in perturbat ion theory, due to asymptotic freedom. The challenging task 
is, however, to calculate g~(L) for large L, away from the perturbat ive regime. 

Before we will deal with this problem, we first have to define the renormalized 
coupling g~(L). It is easy to see that  

g,.(L) := m(L) .  L (41) 

is a reasonable definition, where m(L) is the mass gap in a finite, periodic box of 
length L in space direction (time is kept infinite). We will provide an intuitive ar- 
gument to show that  the relation (41) is a possible definition of the renormalized 
coupling: 

Consider L to be small, then only the constant modes of • with respect to 
x are important ,  implying 

zfo  f f ( )  S = - ~  dx dt Z (Oue(x)) 2 L-.O L dt ~ 2. (42) 
2g 

p = l  

Eq. (42) defines a simple problem in quantum mechanics. It describes a quantum 
mechanical rotator  in 3 dimensions with a moment of inertia 0 = 1/g. The 
energy spectrum is given by 

E -  l(l + l) _ l(l + l) 
2 0  2 5 

g 

l = 0 , 1 , 2 , . . .  (43) 

and we obtain the mass gap as the energy of the lowest excitation, 

g _ gr + O(g2). (44) r e ( L ) -  L L 

After this detour we return to the task of calculating the renormalized coupling 
in the non-perturbative regime. This problem was considered in ([4]) as a pre- 
paration for the analogous highly relevant calculation in QCD. Consider, as an 
example, the value of gr(L) = 1.0505 and calculate the renormalized coupling 
at the scale 2L: g,(2L).  At such big couplings the problem is non-perturbative.  
One has to resort to Monte Carlo simulations using lattice regularization. The 
discretization introduces systematical errors whose size is reduced as the lattice 
unit a is decreased relative to the physical scales of the problem, in our case 
relative to L. To this end g,(2L) is calculated on lattices with L/a = 5, 6 , . . . ,  16 
and the results are then extrapolated to L/a = oo. This is a non-trivial problem 
even in d = 2. The results of this procedure are shown in Fig. 13. 

The question we want to investigate is, whether we can find an improved 
lattice action with drastically reduced lattice artifacts. 
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Fig. 13. Running coupling in non-linear ~ model: extrapolation to the continuum limit. 

7.3 R G  G r o u p  F l o w  a n d  t h e  P e r f e c t  A c t i o n  
for t h e  N o n - l i n e a r  ~ M o d e l  

A radical solution would be to use a perfect lattice action which is completely 
free of lattice artifacts. That such perfect actions exist, follows from Wilson's 
renormalization group (RG) theory ([1], [6] and [7]). 

Beyond the basic requirements of 0(3) symmetry, locality, correct classical 
limit, translation and 90°-rotation symmetry, the form of the lattice action is lar- 
gely arbitrary. It might contain nearest neighbor, next-to-nearest neighbor, etc., 
even different multi-spin interactions. Let us denote the corresponding couplings 
by Cl, c2,... .  The action 13S(~) is represented by a point in the infinite dimen- 
sional space of couplings (13, cl, c2,...). We shall consider RG transformations in 
configuration space, namely block transformations with a scale factor of 2. Un- 
der repeated block transformations the action moves in this coupling constant 
space. The expected flow diagram is sketched in Fig. 14 [7], [5]. In the 13 = oo hy- 
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perplane (correlation length ~ = co) there is a fixed point (FP) c~, c~,..., whose 
exact position depends on the details of the block transformation. We shall use 
the notation S(~; c~, c~,...) = S*(@) and call/3S*(@) the FP-action. The FP 
has one marginal and infinitely many irrelevant directions. The marginal ope- 
rator is S* itself [7]. Actually, S* is not exactly marginal, it is weakly relevant. 
The trajectory which leaves the FP along the weakly relevant direction is called 
the renormalized trajectory (RT). For large/3 the RT runs along the FP-action, 
but for smaller/3 they do not coincide anymore. It is easy to see that the points 

FP 

/ l  \ 

C 2 ~  - - - 

RT 

~ F P  action 

P 

~/~ 

Fig. 14. Flow of the couplings under RG transformation in the O(N) non-linear a 
model. 

of the RT define perfect actions. The argument goes as follows: At any given/3, 
the point of the RT is connected to the infinitesimal neighborhood of the FP by 
(infinitely many steps of) exact RG transformations. Since each step increases 
the lattice unit by a factor of 2, any distance at the given/3 (even 1 lattice unit) 
corresponds to a long distance close to the FP. The infinitesimal neighborhood 
of the FP is in the continuum limit, there are no cut-off effects at long distances. 
On the other hand, for all the questions which can be formulated in terms of 
degrees of freedom after the transformation we get the same answer as before. 
So, there are no lattice artifacts at the given/3 on the RT at any distance. 

Since an RG step is a non-critical problem, the FP-action and the actions 
on the RT in general are expected to be local ([1], [6] and [7]). Locality, however, 
allows non-negligible interactions over several lattice units in the action. For 
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practical reasons we need more than locality. For practical applicability we have 
to answer positively the following questions: 

- Is it possible to determine S* (4~) to a good precision? 
- Is S* (4~) of sufficiently short range? Is the structure of S* simple enough al- 

lowing a parameterization where the number of couplings remains relatively 
low, O(10-100)? 

- Questions i. and ii. for the points of the RT. 

Our pilot study shows that  for the non-linear a model, using a properly 
chosen RG transformation, the answer to these questions is 'yes', even if we go 
down to small correlation lengths.  The determination of S* (4~) is a saddle point 
problem which requires minimization over classical fields. The range of inter- 
action in S* (~) depends on the RG transformation. By a proper choice of the 
block-transformation S* (~) becomes surprisingly short ranged. S* (~) contains 
multi-spin couplings also but its structure is relatively simple. With 0(20) coup- 
lings an excellent parameterization can be obtained which works even on coarse 
configurations, i.e. at small correlation lengths. The problems related to S*(4 ~) 
can be solved partly analytically, which is a special bonus in asymptotically free 
theories. 

7.4 Determining  the Perfect  Classical Act ion 
for t h e  N o n - l i n e a r  ¢r M o d e l  

After these remarks let us look in detail at the RG transformation in configura- 
tion space. As we have seen in Sect. 3.2 (equation 23), one naturally introduces 
block spins as averages over the original degrees of freedom. In our case the 
effective action would read 

e - / 3 ' S ' ( 4 ~ ' 1  = & e',,,, e-ZS(e), 

where: f. = g (45) 

We would like to introduce a parameter in the transformation (45), which can 
be tuned in order to make the fixed point action short ranged. For this purpose 
we write the the delta function in (45) as 

= c o n s t ,  l i m , ~  exp {/3~ [~ ' .~  E 
nCnB 

(46) 
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The function YN (for O(N)-symmetry) obeys the relation 

f d4' (i e ~b const. YN (Ibl) (47) 1) 

and ensures that  the parti t ion function is only changed up to an irrelevant con- 
stant by the corresponding RG transformation for all values of a. Therefore 
can be taken as a free parameter  of the RG transformation. In the limit/3 --~ co 
the RG transformation which corresponds to the smearing out of (f-function 
(expression (47) for finite a) can be written as 

n E n B  n E n B  

(481 
where 3'  = / 3 -  O(1), due to asymptotic  freedom. Equation (48) is a saddle point 
problem in this limit, giving 

S'(") = m~n {S(') - ~ Z ['~n~ Z 4'n - ' Z ~"'] } , ,~  ~e~s (49) 

The FP of the transformation is determined by the equation 

Equation (50) can be solved by stochastic methods for a given configuration 4 i~. 
The final thing one has to do is to find a parameterization for the fixed point 
action. 3 We choose the parameterization 

1 
S*(~) = - ~  ~ p(r)(1 - ~,,+~) (51) 

n~r 

+ Z c(nt'n2'na'n4)(1-~"'~';2)(1-~ns~n')+"" 
~ I  ~n2 ~ n 3  ~n4 

where the summations go over all the lattice points. It is a significant help in the 
parameterization and optimalization problem that  the first two functions p and 
c in equation (51) can be calculated analytically, p(r) are just the coefficients 
for the perfect Laplace operator  on the lattice as discussed in Sect. 6. For the 
optimal choice ~ ~ 2 p(r) falls off as ,-- exp(-3.44[r[) .  This is reasonably short 
ranged. The coefficients c have to be determined numerically. A good fit for the 
action can be obtained by using only 24 parameters. The values for an explicit 
parameterization of the fixed point action (51) are given in Table 3. 

3 Actually for Yang-Mills theories in 4 dimensions the real difficulty is to find a proper 
parameterization of the action with a finite number of parameters, whereas solving 
the fixed point equation for a given field configuration is a numerically feasible pro- 
blem. 
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Table 3. The couplings used for the FP-action.  The diagrams indicate the form of  the 
interaction. All  couplings used for this fit can be put on a l x l  square. The coefficients 
of the quadratic and quartic interactions are calculated analytically, the higher order 
interactions are fitted. 

# type coupling type coupling type coupling 

1 H 0.61884 ~ --0.04957 = = --0.01163 

4 ~ 0.19058 / -0.02212 / -0.00463 

~ ~ o o~ ~ 0oo1~ S o00,~ 

1o ~ o o~1~ ~ 0oo~1~ ~ _o00o~ 

13 ~ 0.01078 ~ 0.00765 ~ -0.00557 

1o X o o~o~ X 00o11~ X 0oo~4~ 
H H 

19 -0.00258 0.00387 -0.00100 
H 11=====0 

22 ~ -0.01817 ~ -0.00772 ~ 0.04970 

7.5 Resul ts  Obta ined  b y  S i m u l a t i n g  t h e  F P  A c t i o n  

The FP-action S~p is defined as/3FpS* (4~). For large/3Fp, the RT runs together 
with the FP-action (Fig. 14), therefore S~p is the perfect action. For interme- 
diate/3Fp values it is not perfect anymore, but - as we shall see - it performs 
amazingly well. As we discussed in the previous sections, the FP-action can be 
determined with the help of classical calculations. For s = 2 it is very short 
ranged and a relatively simple parameterization describes it well. This parame- 
terized form (given in Table 3) can be easily simulated. Even the cluster Monte 
Carlo method can be generalized to such multi-coupling actions. This parametri- 
zed FP-action can be considered as a first approximation towards 'perfectness'. 
We consider again the problem of the running coupling in the non-linear a mo- 
del. One can simulate the FP-action on a lattice of spatial size, say, L / a  = 5 and 

tune ~FP until m ( L ) L  become close to the prescribed value: at ~ f P  ~--- 1.0821 one 
obtains gr(L)  = 1.0578(5). Then measuring on a lattice with L ' / a  = 2 L / a  = 10 
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Fig. 15. Simulating the perfect classical action. 

at the same/3Fp value one obtained m ( 2 L ) 2 L  = 1.2611(9). In the time direction 
the lattice was chosen to be at least 6-t imes larger than the finite box correlation 
length ~(L) = 1~re(L)  and distances larger than three times ~ were used in the 
fitting procedure to obtain the mass gap. At the end one shifts g~(2L) according 
to the slight difference between the actual (1.0578) and prescribed (1.0595) va- 
lue for gr(L) leading to g~(2L) = 1.2638(12). The error from this procedure is 
negligible. One can repeate this calculation at L = 10 also, for ~ F P  : 1.214 with 
the results: m ( L ) L  = 1.0613(8) and m ( 2 L ) 2 L  -- 1.2664(18). After shifting this 
gives g~(2L) = 1.2635(22). In Fig. 15 these two points are compared with the 
extrapolated prediction g~(2L) = 1.2641(20). No cut-off  effects can be seen. 4 

4 Surprisingly, even for an extremely coarse lattice, L/a  = 3, (at t3vp = 0.98) one 
obtains gr(2L) = 1.2626(11), still with no sign of lattice artifacts. 
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1 I n t r o d u c t i o n  

Since Wilson's paper [1] twenty years ago, lattice gauge theory has become a 
powerful tool to solve, rather than to model, QCD. Its applications include the 
demonstration of confinement and deconfinement of quarks and gluons, the mea- 
surement of hadronic matrix elements, the exploration of hadron structure, and 
the study of QCD thermodynamics relevant to relativistic heavy ion collisions. 
The combination of improved approximations to the continuum action, improved 
algorithms and the rapid increase in available computer power offer the prospect 
of definitive, quantitative solutions in the near future. 

Following the advice of Viki Weisskopf, the goal of these brief lectures is "to 
uncover a little rather than to cover a lot". My hope is to explain the basic 
concepts and stimulate interest with a few selected results, so that students can 
appreciate the basic ideas, understand the potential and limitations of Lattice 
QCD, have enough background to understand seminars and colloquia, and be 
prepared to read the vast literature in the field. Textbooks such as those by 
Creutz [2], Montvay and Miinster [3] and Rothe [4] provide deeper insight, key 
articles are reprinted in the volume by Rebbi [5], and yearly reviews and new re- 
sults may be found in the proceedings of the annual lattice conferences published 
as supplements to Nuclear Physics B. 

2 P a t h  I n t e g r a l s  

2.1 Feynman Path Integral 

One of the key ideas underlying our approach is the use of path integrals. The 
formulation of quantum mechanics in terms of path integrals provides not only 

* Lectures presented at the workshop "Lattice QCD and Dense Matter" organised by 
the Graduiertenkolleg Erlangen-Regensburg, held on October llth-13th, 1994 in 
Kloster Banz, Germany 
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a very elegant and physical picture of the quantum evolution as a sum over 
time histories but also a powerful computational framework, which eliminates 
the non-commutativity of the quantum operators and thus reduces the problem 
to a quadrature. 

First we illustrate the basic idea of the Feynman path integral in the simplest 
case of a single quantum mechanical degree of freedom. One goes to Euclidean 
spacetime by rotating time to imaginary time i t  -~ timag and obtains a purely 
real (imaginary) time evolution operator, and later the Wiener measure for the 
path integral (3). The time evolution operator for imaginary time/3 is broken up 
into a large number n of time slices, and by inserting complete sets of position 
eigenstates one obtains for the matrix element 

(# fl(z,+  le- HIz,), 
i=0 

(1) 

where Xo = x ~, xn  = x I .  We may evaluate the evolution operator between two 
neighboring time slices in momentum space by neglecting terms of order e2, 

OO 

<Xi+l I e-~(2r-~-~2+v(z)) ] xi  ) = / ~ d p  eip(z,+,_z,)_6~_2 _ev(z,) + 0(¢2 ) (2) 

- - O O  

= V 2 ~ r e e  +O(~ 2) , 

so that the matrix element (1) can be expressed as the sum over all paths of the 
exponential of the classical action S[x(timag)]: 

(xs ] e - ~ H ] x  ' )  = f d ( x l . . . x n - 1 ) e  - ~ [ - ~ ( ~ ) * + v ( * ' ) ]  

z( t lm.,)=z ! 

--4 / dx(timag) e -S[~(t~m~')] 
, /  

z(o)=z ~ 

(3) 

This result generalizes straightforwardly to the case of many degrees of freedom: 

" ,timbale 2] ) • X ( x ( . . . x ~  }e -~HI x~...z~v = / dx, 

~i..-~, 

x e  ' (4)  
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It should be mentioned that  time-ordering naturally comes in by the time slicing 
procedure, hence time-ordered products are represented as follows: 

T 

- f dtlm~sH(tim~g) 
(x  z ] TO( t l )O( t2 )e  o ] x~) = 

= f #z(t~m~g) O(q, im~g)O(t2, ~m~g) e-S[z(tim~g)] %) 

The Wick rotation to imaginary time in (1) interchanges the role of the 
Lagrangian in Minkowski space and the Hamiltonian in Euclidean space: 

_ - 

Although we drop the subscript of timag and will always use the term time for 
Euclidean time, remember that  the "time" is not the time on the lattice. 

2.2 Scalar  F ie ld  T h e o r y  

The results of the Feynman path integral can easily be transferred to a scalar 
field theory. In order to properly define the path integral we need to discretize 
the spatial coordinates r -~ a n, where the ni are integers and a is the lattice 
spacing. The corresponding lattice field theory is then viewed as a quantum 
many-body problem with canonical coordinates ¢(n) and conjugate momentum 

[¢(n),~(rn) 1 = i~n,m, and the position eigenstates ;~ I x )  = x I x )  are ~r(n), 

replaced by eigenstates of the field ¢(n) [ ¢ ) : ¢(n) [ ¢/- If we define the spatial 
derivative on the lattice as 

3 

IV¢(n) 12:-----Z I ¢ ( n + e i ) - ¢ ( n )  12 , (7) 
i = 1  

the Hamiltonian is replaced by 1 

f d3r { ~Tr2(r) + ~ l V¢(r)12 +V(¢(r)) } 

~ ~2(n) + ~ ~ I ¢(~ + e,) - ¢(n) 12 +V(¢(~)) 
n i : l  

(s) 

1 For simplicity, the lattice spacing a is set to 1 in the following. It can always be 
reinstated by dimensional analysis. 
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The first term in (8) is the kinetic energy part, the remaining terms, which 
will be denoted as FIe] in the following, correspond to a sum of one- and two- 
body potentials. Matrix elements of the Euclidean evolution operator can now 
be expressed as a path integral: 

_ ~--~{ ½,~2 (n)+F[¢(n)]} 
( ¢ z  l e n = 

¢(n'z)=¢1(n)f - ~ ½(¢(n,k)-¢(n,k)) 2] - ~ F[¢(n,k)] 
/ H d¢(n,k)e ~,n e k,n (9) 

¢(n,0)=¢~(n) n,k 
J 

A general time-ordered product acquires the form 

Cs 
(¢! I TO(¢)e -~ fd3r{½"2+½1v¢12+v(¢)} [ ¢~ ) ~ / : D e  O(¢) e -~SE[¢] (10) 

with the Euclidean action {13 } 
SE[¢] -- n ~  ~ ~ (¢(n + ei) - ¢(n)) 2 -t- V(¢(n)) . (11) 

i = 0  

The Euclidean action appears symmetric in spatial coordinates x and "time" 
t. Hence, it is often useful to interpret lattice physics from the viewpoint of 
statistical mechanics in d + 1 dimensions rather than in terms of Hamiltonian 
field theory in d dimensions. One may think of any direction as "time", and one 
should note that the physical temperature of the (d + 1) dimensional statistical 
system is given by the length of the smallest edge on the lattice. The above 
results may be generalized to an arbitrary second quantized theory formulated 
with the help of a set of creation and annihilation operators. To this end, we need 
a resolution of the unity in terms of eigenstates of the annihilation operators - 
known as coherent states - which has to be inserted in the time slicing procedure. 
A detailed discussion of this approach to the path integral formulation can be 
found in [6] and [7]. 

2.3 F e r m i o n i c  P a t h  Integrals  

For Fermions one must take an additional step and introduce Grassmann varia- 
bles which may be viewed as anticommuting c-numbers 

{ ¢ i , ¢ j } = 0 ,  {(~,,~j)=O, { ¢ ~ , ¢ j ) = 0  (12) 

and reflect the anticommutativity of the Fermionic field operators. By (12), 
the most general function of a set of 2N Grassmann variables is a finite linear 
combination of monomials 

~,~1al ¢2a2 "''WN*~aN~/'a"v+IWl . .. CyN with ~ ai _< 2N , (13) 
i 
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where the ai take on the values 0 and 1. The integral is defined by 

/d¢ ,=l ,  f d ¢ i ¢ ,  = 0 (14) 

and coincides with the (left) derivative. Both of them may be regarded as purely 
algebraical definitions. Although there are a few technical details which can be 
found in [7], the essential point is that Grassmann path integrals have essentially 
the same form as for Bosons, except for a few crucial minus signs which do all 
the correct bookkeeping for the difference between Bosons and Fermions. 

Since the Fermionic action is typically bilinear in the fields, the resulting path 
integrals are Gau$ian and the Grassmann variables can be integrated according 
to the formula 

H d(bi 442i e - ~ i  Mii 42j + fli ¢i + Th¢, = det(M) e ~h MiJ 1 ~/j (15) 
i 

which is easily verified for N = 1 by the use of (14) 

/ d(pd¢ e -~ba42 = fd~jd¢ ( 1 - ¢ a 4 2 ) = a  (16) 

and should be compared with the corresponding Bosonic counterpart 

f dz* dzi e_z*Mijz j + j*zi + jiz* = [det(M)] -1 eJTMijiJi (17) 

I 

Note that det(M) appears in (15) to the power -1  instead of 1 due to the fact 
that Grassmann variables transform with the inverse Jacobian under coordinate 
transformations. Assume the action has the form 

S(~,42, A) = ,~ M(A)~j 42j + SB(A) (18) 

where, for example ¢i M(A)ij 425 = ¢ (~ - 4 1 + m) 42 and .4 represents the real 
Bosonic gauge field with an action SB(A) = F~,,(A). Then 

f dCd42dAeS(¢,¢,A)= f dAelndetM(A)+SB(A) , (19) 

and we are left with an integral over the Bose field A of an effective action 

Serf(A) = In det M(A) + SB(A) • (20) 

In the same way, thermodynamic averages of time-ordered products of field anni- 
hilation and creation operators at space-time points i = (xi, ti) can be calculated 
by differentiating the generating functional (15) with respect to the correspon- 
ding sources ~h and ~/j. For example, the propagator (or contraction in the lan- 
guage of Wick's theorem) is: 

( r42iCPj)= / d~dCdA ( ¢ i ¢ j ) e  S(~'42,A) = / d A  M-I(A)ij e Self(A) . 

(21) 
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3 Lattice QCD for Gluons 

3.1 U(1) Gauge  Theo ry  and  the  Wi lson  Act ion  

Here we concentrate on the pure gauge field sector and start with the simplest 
possible gauge group, U(1), corresponding to QED. The Lagrangian density for 
a pure U(1) gauge theory with coupling to an external source j , (x )  given by 

1 F~v F.v + g j . A .  (22) £=-~ 
with the field strength tensor F ~  being the four-dimensional curl of the the vec- 
tor potential At,, F ~  = O.A~ - cgvA~. Note that we will always use a Euclidean 
metric g~v = 5~v, with upper and lower Lorentz indices being equivalent. 

Since F ~  is gauge invariant, F ~  2 is both gauge and Lorentz invariant and 
the Lagrangian (22) leads to Maxwell's equations of electrodynamics. 

We now consider how to approximate this continuum theory on a space- 
time lattice. Often in numerical analysis, one may allow discrete approximations 
to break fundamental underlying symmetries such as translation or rotation 
invariance, which only would be restored in the continuum limit. In the case of 
lattice gauge theory, however, since gauge invariance plays such a crucial role 
in defining the theory, it is desirable to enforce it exactly in the lattice action. 
Thus we will settle for a gauge invariant action which breaks Lorentz invariance, 
and simply insist on making the lattice spacing small enough that the errors are 
acceptably small. 

Following Wilson, we define the action in terms of directed link variables 
assigned to each of the links between sites of the space time lattice. For U(1), we 
define the link variable from site n in the/~ direction to site n +/~ as a discrete 

e n + ~  d z  A 
approximation to the integral e ~g Jn " " ( no sum over repeated indices) 
which we denote 

U.(n) = e i°~(n) • (23) 

f n + m  dx. A.  along the direction Thus t~,(n) is a discrete approximation to g Jn 
of the link, and when the direction is reversed, U.(n) --+ U.(n) t and 0.(n) --+ 
-9~(n). The link variable is then a group element of U(1) and the compact 
variable ~. (n) will be associated with agA. (x )  in the continuum limit. With 
these link variables, the integral over the field variables in the path integral is 
replaced by the invariant group measure for U(1), which is ~ J ' ~  dS. 

The fundamental building blocks of the lattice action are products of directed 
link variables taken counter-clockwise around each individual plaquette of the 
lattice. As will be seen in the section on Wilson loops, this product is gauge 
invariant by construction, ensuring gauge invariance of the resulting action. A 
typical plaquette is sketched in Fig. 1, where n is an arbitrary site and tt and 
r, denote displacements by one site in the horizontal and vertical directions. By 
convention, the compact variables ~. and ~ are associated with links directed 
in the positive tt and v directions so that - ~ .  and -/~v must be associated with 
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T Xv 
~ + ~  

Fig. 1. An elementary plaquette of link variables 

links in the negative # and v directions. The product  of the four group elements 
around the plaquette may thus be written 

Uo = e i°"(n) e i°"(n+~') e - i ° . ( n + ~ )  e -~°"(n) 
( 2 4 )  

where 
L'~,~ = 0~(n + p)  - 0 . (n )  - [0~,(n + u) - 0~,(n)] (25) 

Here, Zl~, denotes the discrete lattice difference operator  which becomes a de- 
rivative in the continuum limit, so tha t  Z ~  is a discrete approximation to the 
curl on the lattice and is proportional to O~A~ - O~Au = F ~  in the continuum. 
Using conventional notation, the Wilson action is then written as 

S = B E  (1 - Re Vo) (26) 
O 

= ( 1  - c o s  . ( 2 r )  
Q 

Continuum QED is recovered by restoring the lattice spacing a and defining 
the new variables/3 := ~ and 0 r (n  ) =: agAu(n), and expanding 0 . (n  + /~)  = 

0 . (n)  + a0uS.(n)  + O(a2), with the result tha t  the leading contribution as a -+ 0 
is 

n,{~,~} 

( 2 s )  
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In the second line, ~-]~{uv} denotes the sum over all pairs of/~ and v arising from 

the sum over plaquettes and an extra factor of 1/2 arises in the last step due 
to the fact that each pair occurs twice in the double sum over repeated indices 
F~,vFt, v. The terms higher order in the lattice cutoff a vanish in the classical 
continuum limit and may give rise to finite renormalization of the coupling con- 
stant in quantum field theory. The lattice gauge theory defined by (26) is in a 
form which may be solved directly using the Metropolis or heat bath methods 
for updating the global action, see eg. [3]. 

An alternative form of lattice gauge theory which is useful in the pure gauge 
sector is the Hamiltonian form. Consider the generalization of the action (26) to 
the case of unequal lattice spacings as in the space direction and at in the time 
direction. By repeating the steps in (28), it is clear that in order to retain the 
continuum limit with unequal spacings, the action must be 

S= ~j3 E (1 - cos ~gv) A- aa~ts~3 E (1 - cos ~,~ ) (29) 
Dt Os 

where D t denotes a space-time plaquette and Os denotes a space-space plaquette 
and we must have 0o(n) = atgAo(n) and 0i(n) = asgAi(n). 
Choosing the temporal  gauge in which U is set to unity on time links, so that  
0o = 0, we then obtain for the space-time plaquettes, 

asJ3 (O,(n + po) -O,(n)) 2 as__.~at ReUa = a~/3at cos (1 + 0i(n + it0) - 1 - 0i(n)) ~ ~ a t  " 

(30) 
The Hamiltonian which produces the action (30) under evolution for infinitesimal 
time at is 

1 ~ 02 ~ E ( 1 - c o s Z ~ i )  (31) 
H -  2a~D . 00~-n) 2 as{i,i}, n 

where i and j run over the spatial directions and n runs over the spatial lattice 
sites. The continuum limit is verified by using ~ = ~ and 0(n) = ga~Ai(n) and 
noting that  the properly normalized commutation relation on the lattice 

[Ai(n), E i (m)] = -i 5ii (fn,m (32) 

requires 

with the result 

H _ - a s  - _ _  
z~ 

i , n  

i 0 
Ei (n) = ~a --~- 0A,(n)  (33) 

g2a~l E 11 - cosa2sg(O, Aj-  a j A , ) )  
{~j},n 

3 1 (E~(n)+B2(n))__+/dsxl ( ) aBE ~ ~ E2(x)+B 2(x) . 
i , n  

(34) 
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The lattice Hamiltonian (31) may be viewed as a many-body SchrSdinger equa- 
tion with coordinates 0i, and a four-body potential. The initial value Monte Carlo 
method [7] therefore provides a useful alternative to the usual global sampling 
of the Lagrangian action, and has been exploited for U(1) and SU(N)  gauge 
theories [8]. 

In discussing the relation between the Hamiltonian and Lagrangian forms 
of lattice gauge theory, it is useful to examine the role of Gaufl's law and how 
the presence of external charges is manifested in the theory. The basic ideas are 
most easily sketched in the continuum theory. Since the Hamiltonian does not 
constrain the charge state of the system, we must project the states appearing in 
the path integral onto the space satisfying V. E = p with a specific background 
charge p which may be accomplished by writing a functional J function in the 

form f :D X e~f d:l~ dt X(v.E-p). Remaining in temporal gauge Ao = 0 and using 
the form of the path integral (2) in which both the coordinate x 4~ A and 
momentum p +4 E appear, the path integral for the partition function projected 
onto the space with external source p may be written 

Z = I D X  D A  :DE e 

=/Vx Ae_ ½ } J (35) 

Equation (35) is an important result. Having started in temporal gauge Ao = 0, 
we see that enforcing Ganfl's law gives rise to a projection integral over an 
additional field X which enters into the final action just like the original Ao field. 
Indeed, renaming X = A0 so that Ai - cqiAo = F0i and writing the source as a 
set of point charges p(x) = ~,~ q,~6(x - xn), we obtain 

z = f v a .  o f d3x d,¼P,.oF,.v 1-I e-'q" f dtAo(X~ :) (36) 
n 

Thus, the Hamiltonian path integral with projection is precisely the Lagrangian 
path integral with a line of +A0 fields at the positions of the fixed external 4- 
charges. In the case of no external charges, we may think of the Lagrangian 
path integral including the A0 integral as the usual filter e -al l  selecting out the 
ground state. In the presence of charges, the path integral augmented by lines 
of A0 at the positions of the charges filters out the ground state in the presence 
of these sources. 

3.2 S U ( N )  Gauge  Theory 

The generalization to non-Abelian gauge theory is straightforward. The link 
variables become group elements of SU(N)  (Their behavior under Gauge trans- 
formations will be explained in the next section.) 

Ac 
U,(n) = e 'agA-(n) , A,(n) = A~(n) ~- , (37) 
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tr A c = 0 , tr A b )~c _-- 2~bc (38) 

where c is a color label which runs over the N 2 - 1 generators A c (Pauli matrices 

for SU(2), Gell-Mann matrices forSU(3)). The integration in the path integral 
is defined by the invariant group measure which we will denote by :D(U) (for 

details see eg. [2][3]). 
Using the same labeling conventions as in Fig. 1 with 0u replaced by ag.A u, 

the product of SU(N)  group elements around an elementary plaquette is 

Ura = e iag'zL" (n) e~gA~ (n+u)e-~gA. (n+~)e-~9~i~ (n) . (39) 

By expanding A (n+/~) as before and making use of the Baker-Hausdorff identity 
e~2e ~? = e ~+~?+½~2[)~'?]+°(~3) due to the non-commutativity of the genera- 
tors, Uo can be shown to reduce in the continuum limit to 

Uo ~ e ia2g i~" 

~ . .  := o . ~ L  - o j i .  + ig ~ i . ,  ~i .  = F~.  -r • 

The discrete lattice action for the SU(N)  gauge theory is then defined as 

~ (  1 ) 2N (41) S(u)=f~ 1 -  R e T r U =  , ~ =  g :  . 

Substitution of Up from (39) in the action (41) yields the desired continuum 
action in leading order 

S(U) =j3  ~ { 1 -  -~ Re Tr ( 1 +  ia2gF~,v -z~t~-4 ̂2~2y I"D v ' ' ' ) }  

l~a492 1 c c 1 b b 5 E ~Tr  (~A F~,(n)~A f~ , (n) )  
n,{~,,,} 

~ F ~  (n) F ~  (n) 
n {,~} 

(42) 

Summation over repeated indices is implied everywhere except where ~--]~{~v} 
denotes the sum over distinct pairs p and u. 

3.3 W i l s o n  L o o p s  a n d  L i n e s  

If there were a quark field defined on a lattice, then under a local gauge trans- 
formation, the field ¢i at each site would be multiplied by an element g, of the 
gauge group, 

¢i --4 g~¢~ , (43) 
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The link variables U. (n)  were explicitly introduced to compensate such a gauge 
transformation, so the link variable U,j going from site i to j transforms like 

U i j  --4" g i U i j g ;  1 • (44) 

The only variables in the pure gauge sector are link variables, and the only gauge 
invariant objects which can be constructed are products of link variables around 
closed paths, for which the factors of g and g -1 combine at each site. The Wilson 
loop is therefore defined as the trace of a closed loop of link variables 

W :=Tr  U,¢ = WrU, V k . . . V , , , , V , ,  
i j E c  

(45) 

and specifies the rotat ion in color space that  a quark would accumulate along 

the loop c from the path-ordered product  P~ ef ~g~i. 
Note tha t  by (43),(44) a product  of link variables transforms in the same way 

as a quark anti-quark pair under gauge transformations 

U i k U k t  . . . U m j  - +  9 i U i k U k t  . . . U m 3 g ;  1 

¢ i¢ i  -4 gAb,¢igj -I • 

(46) 

Thus, as far as the gluon fields are concerned, the ends of a chain of link variables 
are equivalent to an external quark-antiquark source, and the presence of such 
a chain of link variables therefore measures the response of the gluon fields to 
an external quark-antiquark source. 

t] .  

'c 

t I t x  0 
0 L xo 

Fig. 2. A space-time Wilson loop defined by the chain of link variables C on a finite 
lattice (left) and a Wilson or Polyakov line defined by the chain of link variables L on 
a finite lattice (right). 
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Now, consider the time evolution of the system corresponding to the expec- 
tation value of the Wilson loop drawn in Fig. 2: 

f 9(u) e-S(U)Tr 1-I U~j 
c 

( W ) = f 9(U) e -s(v) (47) 

Prior to the time ti, there are no color sources present, so evolution filters out 
the gluon ground state in the zero charge sector, 10> = e -t~tt IQ = 0>. At time ti, 
the line of link variables between 0 and L creates an external antiquark source 
at 0 and a quark source at L. As discussed in connection with (36), the links 
in the time direction between ti and ti maintain these sources at 0 and L. 
Hence, for any t between ti and tl, the evolution filters out the lowest gluon 
configuration in the presence of external quark-antiquark sources producing the 
state I¢) = e-(t-t')H ¢(0) ~(L) 10). Finally, at time ti, the external sources at 
0 and L are removed by a line of links from L to 0, and the system is returned 
to the zero charge sector. Using Feynman's picturesque language of antiquarks 
corresponding to quarks propagating backwards in time, one may succinctly 
characterize the Wilson loop as measuring the response of the gluon fields to an 
external quark-like source traveling around the perimeter of the space-time loop 
in the direction of the arrows. 

Quantitatively, if t! - t ,  is large enough, the lowest gluon state in the presence 
of quark and antiquark sources separated by L will dominate, and (W)  will be 
proportional to e -(tj-t~)v(L) where V(L) is the static quark-antiquark potential. 
Physically, this potential corresponds to the potential arising in heavy quark 
spectroscopy, and its calculation therefore signals confinement. Furthermore, at 
large distances, the potential in the pure gluon sector becomes linear (since the 
flux tube cannot be broken by qq pair creation), so the Wilson loop enables 
direct numerical calculation of the string tension. If the Wilson loop has I links 
in the time direction and J links in the space direction, then 

C z j  

l--~.oo........y e _ a l V ( a J  ) 

l '~.~-~°°e-a2alJ . 
(48) 

The exponent is thus proportional to the area for large loops, and this area 
behavior is a signature of confinement, since it arises directly from the linearly 
rising potential. Indeed, the area law and hence confinement is found in the 
strong coupling expansion of lattice Gauge theories (see next section). Although 
the preceding physical argument was framed in Hamiltonian form with evolution 
in the time direction, it is clear that because of the symmetry of the Euclidean 
action, all space-time dimensions are equivalent and the area law reflects this 
symmetry. Although the area law behavior of large Wilson loops is clear from 
(48), in practical calculations on finite lattices, there are significant corrections, 
including a term proportional to the perimeter arising from the self-energy of 
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the external sources and a constant arising from gluon exchanges at the corners, 
so that  

- In W(I ,  J) ~ C + D( I  + J) + a2a I j  . (49) 

To eliminate the constant and perimeter terms, the following ratio of Wilson 
loops having the same perimeter is calculated to cancel out the C and D terms 
in (49) 

( W ( I , J ) W ( I -  1, J -  1 ) )  
X(I ,J )  = - I n  k W ( I , J -  1 ) W ( I -  1, J)  / ~ a2a ' (50) 

and we will subsequently show results for this quantity. 

A Wilson or Polyakov line is another form of gauge invariant closed loop 
which can be placed on a periodic lattice. In this case, as sketched in Fig. 2, the 
links are located at a fixed position in space Xo and run in the time direction from 
the first t ime slice to the last, which by periodicity is equivalent to the first and 
thus renders the product  gauge invariant. If the length of the lattice in the t ime 
direction is/3t (were the subscript t distinguishes it from the inverse coupling 
constant/30 _= ~-~ to which we will append a subscript g when necessary), the 
expectation value of the Wilson line yields the parti t ion function for the gluon 
field in the presence of a single fixed quark at inverse temperature/3t  and thus 
specifies the free energy Fquar k of a single quark. 

f v (v )  e-S" :) Tr II v,j 
( ,L ) = L =: e-~, F...,k (51) 

f :p(U) e-S(U) 
This quantity will be useful as an order parameter for the deconfinement phase 
transition. Note that because the periodic lattice is a four-dimensional torus and 
L winds around the lattice once in the time direction, it is characterized by a 
winding number and is thus topologically distinct from a Wilson loop which has 
winding number 0. By the preceding argument, two lines in opposite directions, 
one at x -- 0 and one at x -- L, will produce the free energy of a quark and 
antiquark separated by distance L, and as/3t --+ oo this provides an alternative 
means of calculating the static quark-antiquark potential. 

The interaction energy can be measured by comparing sources of different 
temporal  extent t I - ti to cancel out end effects, and properties of the ground 
state may be obtained by measuring appropriate observables on intermediate 
t ime slices. For example, E 2 and B 2 in the presence of a static source can be 
measured using the fact that ,  in the continuum limit, a plaquette in the #v plane 
may be expanded 

1 4 2--2 (52) T r U ; L  =  e'a29 " ~ 1 --  g 

Hence, in the presence of a source O, where O denotes e.g. L or W above, 
the change in E 2 or B 2 relative to the vacuum is given by the space-time or 
space-space components of 

<OU~(r)> 
<F~(r)> - <o> <u;~>. (53) 
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3.4 Strong Coupling Expansion 

For strong coupling g, one can obtain a useful physical picture [1] of what hap- 
pens when one evaluates the expectation value of a Wilson loop 

f _~. Z:(~_~ ~(Uo+U,) ) ( W ) = Z -z 7)(U) e o Tr H U (54) 
C 

by expanding the exponential in powers of the inverse coupling constant fg := 
2N 7 "  This expansion is formally equivalent to the high temperature expansion in 
statistical mechanics where the inverse temperature plays the role of fg. Note 
however, that the actual physical inverse temperature of our system is specified 
by the length of the lattice in the time direction, f t  = Nat, and is distinct from 
fig. 

The structure of the expansion is revealed by considering the integrals over 
group elements which arise in the path integral (54). A general discussion of 
integration over SU(N) group elements is given by Creutz [2], but for our present 
purposes it is sufficient to use the following two results, where Greek indices 
denote SU(N) matrix indices, not sites 

dU = 0 (55) u~ 

f i (56) dV V~V~ = - ~ . ~  

which follow directly from the orthogonality relation for irreducible matrix repre- 
sentations of the group and are trivially verified for U(1) for which the invariant 
measure is f dU = ~ f~_,~ d8 and U -- e i0. 

Now consider the diagrams which result from drawing the links in the Wilson 
loop l-Iv U and some set of plaquettes Up and U~ obtained from expanding the 
exponential in (54). The integral (55) tells us that any diagram which has a single 
exposed link (that is, a single link between a pair of sites) anywhere on the lattice 
gives no contribution. Thus, the only non-vanishing terms in the expansion are 
those in which we manage to mate plaquettes from the exponential with the 
Wilson loop to eliminate all exposed links. The simplest way to mate two links 
to obtain a non-vanishing result is to place them between the same sites in 
opposite directions, which by (56) yields ~ .  Since each plaquette brings with it 
a factor of f ,  the lowest order non-vanishing contribution to ( W ) is obtained by 
"tiling" the interior of the Wilson loop with plaquettes oriented in the opposite 
direction as sketched in Fig. 3 for a 3 x 3 loop. Note that each of the outer links 
of the original Wilson loop is protected, and the interior links protect each other 
pairwise. The leading term for an I x J Wilson loop would thus have I x J tiles, 
each contributing a factor 2-~n" In addition, because of the traces in the plaquettes 
and Wilson loop in (54) and the fi's in (56), there is a factor of N for each of 
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Fig. 3. A 3 x 3 Wilson loop tiled with plaquettes in the strong coupling expansion. 

1 the (I + 1)(J + 1) sites, and because of the factor -~ in (56) there is a factor 
for each of the (2IJ  + I + J) double bonds. Hence, except for SU(2), where the 
counting is different because the two orientations of plaquettes are equivalent, 
the overall contribution goes as 

( W ( I ,  J ) )  ,,, ~ , (57) 

giving the lowest order contribution to the string tension 

a , - ~ - a  -21n ~ 

Fancier tilings are also possible if one is willing to use more tiles and thus include 
more powers of ~. For example, one could place five tiles together to make a cubic 
box with an open bot tom and replace one or more tiles with this box. The box 
could be elongated, or even grown into a tube which connects back somewhere 
else. Alternatively, one could replace a plaquette oriented in one direction by 
(N - 1) plaquettes oriented in the opposite direction to obtain a non-vanishing 
SU(N)  integral. 

The utility of this expansion is threefold. It shows that  any lattice Gauge 
theory (even QED) is confining with the linear potential in the strong coupling 
limes, as assumed in (48). In addition, it provides a physical picture of filling 
in the Wilson loop with a gluon membrane, whose vibrations and contortions 
represent all the quantum fluctuations of the gluon field. When observed on 
a particular time slice, the cross section of this surface corresponds to a color 
flux tube joining the quark-antiquark sources. And thirdly, in low orders, the 
individual terms can be calculated explicitly and provide a valuable quantitative 
check of numerical calculations. 
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3.5 C o n f i n e m e n t  T r a n s i t i o n  

The formal similarity between the Euclidean path integral for pure gauge theory 
and statistical mechanics in d+  1 dimensions allows us to apply standard techni- 
ques for the symmetry analysis of phase transitions to the confinement transition. 
Symmetry analysis of gauge theory is treated in detail in the review by Svetitsky 
[9] and I will only summarize the main ideas here. 

The essential idea is to follow the approach of Landau and identify an order 
parameter characterizing the transition, construct an effective action in terms of 
this order parameter, and use symmetry considerations to identify the form of 
the action. 

The Wilson loop satisfies Landau's definition of an order parameter since, by 
(51), (L)  = e - j3 tFquf ,k .  In the low-temperature confined phase, the free energy 
of a single quark is infinite so that (L > = 0 whereas in the deconfined high- 
temperature phase the free energy is finite and thus ( L > ~ 0. Since this behavior 
appears superficially to be just the opposite of that of a magnet, which has 
magnetization ( M > ~ 0 at low temperature and < M ) = 0 at high temperature, 
it is important to recognize once again that the parameter which enters the lattice 
partition function analogously to the temperature in statistical mechanics is not 

2 n  S 
the physical temperature. For a fixed lattice, the action has the form e ~ o so 
that g2 plays the role of an effective temperature whereas the physical inverse 
temperature is ~t = Nta where Nt is the (fixed) number of lattice sites in the 
time direction. Thus, in order for the physical temperature to increase, a must 
decrease, which as we shall see subsequently, means that g decreases, so that 
the effective temperature decreases. Hence, both a magnet and a lattice gauge 
system have finite order parameters when the relevant effective temperature is 
low and vanishing order parameters at high effective temperature. 

It is useful to define an effective action Self ILl such that the original partition 
function obtained by integrating the lattice action S(U) over the group elements 
can be written as an integral of S e l f [ L ]  o v e r  the order parameter: 

Z = / d(U)e -s(u) = / dLe -se'[L] (59) 

This effective action is constructed in the standard way by introducing a ~- 
function requiring that L(x) be equal to the expectation value of a Wilson line 
at point x: 

I will now show that this effective action is symmetric with respect to the center 
of the gauge group, and that this symmetry has important implications for the 
confinement phase transition. 

Let Z be an element of the center of the group, Z E C. That is, Z commu- 
tes with every element of the group. Suppose every link in the time direction 
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originating on a particular time slice is multiplied by Z. In effect, the lattice is 
now no longer periodic but rather is periodic up to multiplication by the center 
element Z. The lattice action S(U) is invariant under this multiplication by Z, 
since any space-time plaquette containing the affected time links is transformed 
a~ 

vl v2vJ vl zv, v2vJ z*v  
: v l  u l  . 

The last line shows that it is essential that Z commutes With all elements of the 
group. Each Wilson line, however, necessarily contains one factor of Z which 
may be commuted to this end of the line, so that 

I I  u,j - ,  z I I  v,j .  (62) 
L. L.  

A matrix which commutes with every SU(N)  matrix must be a multiple of 
the unit matrix, so we may write Z = ZI .  Since the action is invariant under 
multiplication of an entire time slice by Z whereas the Wilson line is multiplied 
by Z, the effective action has the symmetry 

Self[L] = Sat[ZL l , Z I  e C . (63) 

Given this symmetry of the effective action with respect to the center, the 
usual symmetry arguments for analyzing phase transitions apply. The major 
assumption at this point is that one can integrate out the degrees of freedom 
at short distance scales and derive a Landau-Ginzburg action of the usual local 
form 

Serf -+ f dx {(0iL) 2 + V(L)} (64) 

where the effective potential has symmetry with respect to the center V(L) = 
V ( Z L )  and the reader is referred to Ref. [8] for details, 

We are now ready to examine the implications of the symmetry with respect 
to the center of the local potential V(L) for the order of the deconfinement 
transition. First, consider U(1) gauge theory. Since the group is Abelian, the 
center is the whole group and V(L) in symmetric under L ~ ei°L. This requires 
that V is a function of ILl 2 and has the generic form 

Vu(1) (ILl 2) -- alLI 2 + biLl 4 + clLI 6 + . . . .  (65) 

A phase transition will occur in the region of temperature in which a(T) changes 
sign, and we note that the value of L at which the minimum occurs will change 
discontinuously or continuously depending upon whether b is negative or posi- 
tive. Thus, the order of the phase transition depends on the sign of b, and in 
particular, is not constrained by the form of (65). 

Is the non-Abelian case constrained any more strongly by symmetry? It is 
easy to see that the center of SU(N)  is Z(N), that is, the N roots of unity, since 
det(ZI) = Z N = 1. For SU(2), this means Z = +1 and hence, V(L) = V ( - L ) .  
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As in the case of U(1) this only requires V to be a function of JLJ 2 leading again 
to the form (65) for which the order of phase transition is indeterminate. For 

SU(3), however, we have Z(3) symmetry so that V ( L )  = V (e  '"~3~ L ) .  
% 

In this 

case, the action may include a cubic invariant ReL 3 in addition to powers of 
iLl 2, so that (for real L) the action has the generic form 

Vsu(3)(L) = a ILJ 2 + bReL  3 + c JLJ 4 + . . . .  (66) 

In the presence of a cubic term, the position of the minimum must necessarily 
jump discontinuously, and we therefore conclude that the phase transition must 
be first order. This argument, while elegant and compelling, does depend on 
the formally exact effective action having the essentially local Landau-Ginzburg 
form (64). 

There are two essential aspects of the Z(3) symmetry of SU(3) for our pur- 
poses. The first is the role of the Wilson line (L / as an order parameter and 
measure of spontaneous symmetry breaking. In the confining phase, /L) = 0 
and there is no spontaneous symmetry breaking. Thus, a plot of a Monte Carlo 
calculation of ILl in the complex phase will produce a graph which is symmetric 
under rotation by ~ ,  and has points equally distributed along the directions 1, 

2= i 2 , ~  i eT  , and e 3 . This is analogous to a calculation of the spin in the unbroken 
symmetry phase of an Ising system, for which the distribution of spins is evenly 
divided between up and down. In the broken symmetry deconfined phase, ho- 
wever, (L) ¢ 0, and calculated values of (L)  may be clustered around any one 
of the three axes 1, e ~  i and e- 3 , just as the ordered state of the Ising system 
will either be concentrated around spin up or down. This behavior is clearly 
displayed in the Monte Carlo calculations [10] shown in Fig. 4. As the length of 
the lattice in the time direction/3~, corresponding to the inverse temperature, is 
increased from 2 to 5 lattice units, one observes a qualitative change from the 
broken symmetry solution in part (a) clustered around the real axis to the com- 
pletely symmetric solution in part (d) which is rotationally symmetric around 
the origin. 

The second essential result is that the SU(3)  confinement transition is first 
order. It is difficult to establish definitively the order of a phase transition by nu- 
merical calculations on finite lattices, since discontinuous transitions in the ther- 
modynamic limit correspond to continuous transitions on finite lattices. There 
is, however, very strong evidence that the transition is indeed first order, inclu- 
ding the sharpening of the transition as the lattice size is increased, hysteresis 
observed when a series of calculations with decreasing temperature is compared 
with a series calculated with increasing temperature, and two phase coexistence 
in which a sequence of Monte Carlo configurations in one phase persists in ap- 
parent equilibrium for a long time followed by an equally persistent sequence of 
configurations in the other phase. 

Particularly suggestive evidence is provided by the microcanonical Monte 
Carlo results [11] shown in Fig. 5 for SU(2) and SU(3). Recall that for a van 
der Waals liquid-gas transition, the density is a multi-valued function of the 
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Fig. 4. Monte Carlo calculations from Re£ [5] of  the order parameter ( L ) in the com- 
plex plane,showing symmetry  restoration as the inverse temperature/3t increases from 
2 to 5 lattice units. 

temperature and the Maxwell construction specifies the actual discontinuity in 
the density occurring in the first-order transition in the thermodynamic limit. 
However, the S-shaped curve corresponds to metastable states which, although 
inaccessible in the canonical ensemble, can be explored by microcanonical cal- 
culations. For gauge theory on a lattice with a fixed number of sites, the order 
parameter ( L ) corresponds to the density order parameter, and/39 corresponds 
to the temperature since increasing/~9 decreases g which decreases the lattice 
spacing a and thus increases the temperature (see next section). Figure 5 clearly 
demonstrates that  on the same finite lattice, the Wilson line in SU(3) shows 
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the double-valued van der Waals dependence on f~g characteristic of a first-order 
transition whereas in SU(2) there is no reentrant behavior and the transition 
appears second order. This result is consistent with and strongly supports the 
Z ( N )  symmetry analysis. 
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Fig. 5. Microcanonical calculation [11] of the dependence of the Wilson fine order pa- 
rameter, denoted WL, on ~eff, which increases with increasing temperature.The reen- 
trant behaviour for SU(3) indicates a first order transition whereas the single-valued 
increase for SU(2) indicates a second order transition. 

The deconfinement transition is much more difficult to t reat  in the presence of 
dynamical Fermions. Physically, it is clear that  a Wilson line no longer serves as 
a rigorous order parameter  since the possibility of creating quark-antiquark pairs 
from the vacuum can lead to screening of the external source and thus a finite 
rather  than infinite free energy. In terms of our symmetry analysis, introduction 
of gauge invariant quark-gluon coupling terms of the form ~iUo~b j destroys the 
Z ( N )  symmetry of the action since ~rU~br+l -~ Z~brU~br+l at the t ime slice 
on which temporal  link variables are multiplied by elements of the center. The 
hope is that  nonetheless quarks are in some sense a small enough per turbat ion 
that  the qualitative features of the pure gluon sector are not destroyed. 

3.6 C o n t i n u u m  Limi t  a n d  R e n o r m a l i z a t i o n  

Pure  gauge theory on a finite lattice is specified by two parameters: the dimen- 
sionless bare coupling constant g and the lattice spacing a corresponding to a 
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'~ As a is changed, the bare g must be changed to momentum cutoff Pmax "" a" 

keep physical quantities fixed. 
In principle, the renormalization procedure on a lattice is very simple and 

could be carried out as follows. First, pick an initial value of g and calculate 
some set of dimensionful physical observables ( O~ ). These observables may be 
written in the form 

(Oi) = a -d' (.fs(g) ) (67) 

where d~ is the dimension of the operator and f~ is the dimensionless quantity 
calculated on the lattice using the Wilson action with /3 = ~ and with all 
lengths expressed in units of the lattice spacing a. For example, we have already 
seen in (49) that the string tension has the form ~ = a-~x. Then, use the physical 
value of one operator, say O1, to determine the physical value of a corresponding 
to the selected g. Again, using the string tension example, we could define a = 
v~ /420  MeV. With this value of a determined from O1, all other observables 
0~. . .  ON are completely specified. One should then repeat this procedure for 
a sequence of successively smaller and smaller values of g, thereby determining 
the function a(9 ) and a sequence of values for the observables O2. . .  ON. If the 
theory is correct, then each sequence of observables O, i ~ 1 should approach a 
limit as 9 -+ 0, and that limit should agree with nature. 

In practice, it would be very difficult to carry out a series of calculations 
as described above to small enough g to make a convincing case. Hence, it is 
preferable to make use of our knowledge of the relation between the coupling 
constant and cutoff based on the renormalization group in the perturbative re- 
gime, and only carry out explicit lattice calculations down to the point at which 
the renormalization group behavior is clearly established. The foundation of the 
argument is the fact that the first two coefficients in the expansion of the re- 
normalization group function add-~a are independent of the regularization scheme, 
and thus may be taken from continuum one and two loop calculations: 

a~a = "y0g 3 q- "ylg 5 -b .... 

Integration of this equation yields the desired relation 

1 ( 16"n "2 "~ 51/121 'r 2 

a(9) -- ~LL ~, 1-~g 2 ] e- ~-~"J" 

(68) 

(69) 

showing also that g -+ 0 as a -+ 0, where AL is an integration constant and we 
have used the values of 70 and 71 for SU(3) with no Fermions. The renormaliza- 
tion group behavior can be used only for asymptotically free theories, and only 
if a window exists in which the onset of scaling can be observed for a sequence 
of lattices. 

The constant AL governing the relation between the bare coupling constant 
and the lattice cutoff can be related by one-loop continuum calculations to the 
constants AMOM and A~--~, which govern the relation between the renormalized 
coupling constant and continuum cutoff using the momentum space subtraction 
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procedure in Feynman gauge and the minimal subtraction procedure respec- 
tively, with the results [12] 

AMOM ---- 83.5 AL , AD-  # = 28.9 AL • (70) 

This correspondence is important for two reasons. First, the large coefficients 
in (70) allow us to reconcile our notion that the basic scale AQCD is of order 
several hundred MeV with the fact that lattice measurements yield values of 
AL ,,~ 4 -- 4.6 MeV, which would otherwise appear astonishingly low. Second, it 
provides a quantitative consistency test, since experiments in the perturbative 
regime of QCD produce values of a consistent with those calculated on the 
lattice. 

There is now substantial numerical evidence that lattice calculations in the 
pure gauge sector display the correct renormalization group behavior, and thus 
provide accurate solutions of continuum QCD. Data exist for two independent 
quantities, Ttr, the temperature of the deconfinement transition, and the string 
tension a. Results for the transition temperature are shown in Fig. 6 taken from 
Ref. [13] based on data from Ref. [14]. The transition temperature on a lattice 
with N~ time slices is given by Ttr = (Nta(gtr))  -1 where gtr is the value of 
the coupling for which the transition occurs. If a(gtr) is calculated using the 
perturbative expression (69), then once g is small enough that the lattice theory 
coincides with the continuum theory, the quantity Ttr /AL should approach a 
constant. As seen in Fig. 6, Ttr/An indeed appears constant above/3 = ~ = 6. 
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Fig. 6. Ratio of  the transition temperature T .  to A L  as  a function of  inverse coupling 
constant. 

A second test of continuum behavior is provided by the string tension. One 
G could display the approach to the continuum limit by plotting ~ as a function 

~f~  : ~6-6n and observing that, as in Fig. 6, this ratio becomes constant beyond 
alternative plot, which will also be useful for subsequent purposes is 

shown in Fig. 7. For the present, observe only the solid squares, which denote 



58 John W. Negele 

4 

3 

2 

d' (GeV) 

| 

0.5 

" 0.3 

0.2 

a (fro) 

0.1 

0.05 

| i i ' | i I ~ i  

; . . . -  - # . 5 > - "  - 

. 
• Q 

{ 
f 

• t • 
o 

! I 

5.6 5.8 

• o "  

• M w 

o M S  

! I I i 

6.0 6.2 6.4 
6 ,s = 

Fig. 7. Physical lattice spacing a(g), determined from the string tension (squares) and 
hadron masses in the quenched approximation (circles). The solid and dashed lines 
show the dependence expected in the continuum limit from the renormalization group 
expression (69) for two values of  AL. The difference between masses calculated with 
Wilson Fermions (solid circles) and staggered Fermions (open circles) is discussed in 
the next  section. Data are taken from references cited in [29]. 

values of a calculated from the surface tension as follows 

l  +xpt .I 
_ (71)  

420 MeV 

For comparison,  the renormalization group expression (69) is also plotted for the 
value A = 4.05 MeV which provides the best  fit to the last two points. Again, 
one sees cont inuum behavior above/3 = 6. This  graph also allows us to read off 
directly the values of a and a -1 at  various values of/3 and compare  values of a 
determined from the string tension with those determined from hadron masses to 
be discussed in a later section. One may also note tha t  over the range of coupling 
constants relevant to lattice calculations, the effect of the premultiplying factor 
g-O.S4 in (69) is indiscernible and In a is essentially linear in/~. Although space 
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does not permit additional figures pertinent to the continuum limit, it is also 
instructive to look directly at the renormalization group function a dd~, and a 
useful graph combining string tension and transition temperature calculations is 
shown in [15]. 

More on renormalization on the lattice and the continuum limit can be found 
eg. in the lectures by P. Hasenfratz at this workshop [16]. 

In summary, I believe it is reasonable to regard lattice gauge theory in the 
pure gauge sector to be quite satisfactory. There are no glaring conceptual or 
computational problems, and all the numerical evidence to date suggests that one 
obtains an excellent approximation to the continuum theory for 3g above 6. In 
contrast, we will now see that full QCD including Fermions is more problematic 
at both the conceptual and computational levels. 

4 L a t t i c e  Q C D  w i t h  Q u a r k s  

4.1 Naive Lat t ice  Fermions  and  Doubl ing P r o b l e m  

The simplest Hermitean finite difference expression for a Fermionic Hamiltonian 
that has the desired symmetries would be: 

1 
s~aive : a4 ~ ~a E [¢(n) 7~ U~(n) ¢(n + a~) - ~(n + a~) 7~ U~(n)¢(n)] + 

n /J 

+ a 4 m e ( n ) .  (72) 
n 

It has the proper continuum limit as can be seen by expanding the link variables 
and fields 

where Euclidean ~-matrices satisfying {%,, 7v} = 2 5~,v have been used. 
However, the above naive lattice action (72) has an unexpected problem that 

shows already up in the one dimensional case. Consider the Hamiltonian of free 
(Au = 0) massless quarks in one space dimension, 

H n a i v e  = a C t ( n )  a ~- , a = 7 0 7 1  = a 3  • (74) 

In order to obtain a Hermitean Hamiltonian it is essential to use a symmetric 
next to nearest neighbour difference approximation to the first derivative. We 
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now transform the field operators to momentum space by writing the Fourier 
s u m  

N 

1 2 p~r 
~kp e kp = (75) ¢ ( n ) -  ~ ~ -'" ikpn~, g a  

p : - -  2 ~ 

where it is understood that for a lattice with N sites and periodic boundary 
conditions, the sum over momenta in the first Brillouin zone extends over the N 
momenta. The Hamiltonian is diagonal 

N 

2 sin(kp a) 
H naive = ~ ¢ ~  a Ck~ (76) 

a 
p=-  

and thus has the eigenvalue spectrum 

(ka) 2 ) 
E k = 4 - s i n k a  k~O4-k 1 - - - + . . .  (77) 

a 3 

with eigenfunctions 

~ ( n ) = e i k n a X +  , X+:= (10) , X - : = ( 0 1 )  . (78) 

The comparison of the continuum spectrum for a massless Dirac particle Ek = 

+k and the lattice spectrum in the top of Fig. 8 displays the species doubling 
problem. In the region of small k values, the lattice spectrum (77) yields a good 
approximation to the linear physical spectrum, and the range of linearity increa- 
ses as a --4 0. However, at the edge of the Brillouin zone, there is a second region 
in which the spectrum also goes to zero linearly. In fact, for every physical mode 
~k, there is a precisely degenerate unphysical mode ~ [ -k .  Since the partition 
function blindly counts and weights all modes according to their energies, it is 
clear that all Fermion loops will be overcounted by a factor of 2 in all physical 

dE the lattice spectrum observables. Note also that since the velocity is v = -~-, 
necessarily mixes right-moving and left-moving modes. 

The origin and structure of the doubled states is simple. The degenerate 
partner to the state ~k(n) = eiknax is the state ¢~-k(n) = ein~e-ik'*aX, that 
is, a sawtooth mode in which every other lattice site has an extra factor of -1.  
The real part of a low k mode ~k and its sawtooth partner ~P~_k are sketched for 
a half wavelength in the middle section of Fig. 8. Note that although there are 
sufficient points in the half wavelength of ~k to yield an accurate integral with 
any smooth function, there is no way that the rapidly oscillating wave function 
~ - k  can represent a mode with momentum near ~. Thus, we need some way 
to eliminate these modes so that they play no role in the continuum limit. The 
origin of the degeneracy of the physical mode with its sawtooth partner is the 
symmetric difference approximation to the derivative ~b' ¢("+D-¢(n-U in the 

~'~ 2 a  

naive Hamiltonian (74), which clearly is impervious to the minus signs e -m~ and 
thus yields the same magnitude for the derivatives of Ck and ¢~-k- The origin 
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Fig. 8. Fermion doubling in one dimension. The top plots compare the physical con- 
t inuum spectrum with the spectrum of  the lattice Hamiltonian. The middle plots show 
a half  wavelength of  the real part of  the non-vanishing component o f  a physical wave 
function (left) and its degenerate unphysical sawtooth partner (right). The bottom 
plots show the linear combinations corresponding to staggered Fermions. 

of this symmetric difference, in turn, is Hermiticity, since expressions involving 
only nearest neighbor differences like Ctn(¢(n  + 1) - ~b(n)) are non-Hermitean 
and yield complex eigenvalues. 

The doubling we have discussed for simplicity in one dimension arises ana- 
logously in each of the four Euclidean dimensions of the naive Fermion action, 
(72), so that  we obtain 24 = 16 lattice modes for each physical mode. Again, 
specializing to the massless case, the momentum space action corresponding to 
(72) is 

sin (k~a) Ck (79) S~ aive :---- ~ M ¢  = E Ck ~ 7.  a ' 
k 

so that  the inverse propagator is 

sin (k"a) (80) (T~b¢) -1 = M ( k )  = Z T" 
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This propagator replicates the physical behavior in the region of k s -~ 0 fifteen 
times around points on the edge of the four-dimensional Brillouin zone at which 

~r  one or more of the components k s ~ ~. 
We are now prepared to understand both the features giving rise to the 

doubling problem and the generality of the problem [17]. Whereas the specific 
function sin (k~'a) in (76) and (79) is the result of using the lowest-order Her- 
mitean difference formula for the derivatives in the continuum action, the most 
general form of the chiral symmetric, Hermitean action derived from discrete 
derivatives on a periodic lattice with the correct continuum limit is 

SF = E Ck E %PO(k)~bk (81) 
k 

where P~ (k) is real for Hermiticity, P"  (k) k_~0 0 for the correct continuum limit, 
and P"(k) is periodic under k s --4 k" + 2, and continuous for local discrete 

Q 

difference formulae on a lattice. Note that chiral symmetry requires the form 
~ % P " ¢ ,  so that under a chiral transformation ¢ -~ ei~5¢, the two sign changes 
from ~/o in ~] and % leave the action invariant. Since P"(k) is real, continuous and 
periodic in k s with period 2" -h-, it must cross the axis at some intermediate point, 
so that this general discrete action has the doubling observed in (79) in each 
of the four Euclidean directions yielding 15 spurious low-mass excitations for 
each physical excitation. A rigorous version of these arguments is known as the 
Nielsen-Ninomiya no-go theorem [18], which proves using homotopy theory that 
one cannot avoid Fermion doubling in a lattice theory which is simultaneously 
Hermitean, local and chirally symmetric. 

An additional aspect of Fermion doubling is the absence of the axial anomaly. 
The unphysical doubler Fermions couple to an external axial current with the 
opposite chiral charge and effectively cancel the axial anomaly arising from the 
physical Fermions. 

4 . 2  W i l s o n  F e r m i o n s  

One of the ways out of the no-go theorem is to give up chiral symmetry and, 
following Wilson, add a second derivative term to the Hamiltonian. In one di- 
mension, combining the naive Hamiltonian H naive (74) with a perturbation of 
the form 

. ,  o ( ) 2 i a ~ ¢ t ( n )  70 ¢ ( n + l )  2 ¢ ( n ) + ¢ ( n  1) 
n g2 

o/ a--+o - ~  dx ¢(x) ¢"(x) %_~0 0 

yields the Wilson Hamiltonian 

Hw Hnaive+rH I E ~ i  [(~sin~ ka) 3 '0 (cos(ka) - l ) ]  
- - - -  - - - -  - -  r -"7- ' ~ k  • 

k Z a 

(82) 

(83) 
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Using a representation with ~ -- a3 
spectrum 

with the limits 

and -iTo = al,  we obtain the energy 

r + (cos(ka)- 1)] 2 (s4) 

S > ( ± ~  (k-+ ~) (85) 

Thus, for fixed r, the mode for k --~ 0 has the correct continuum limit whereas 
the sawtooth mode for k .~ ~ becomes infinitely massive and decouples from the 
theory. 

In four Euclidean dimensions, the corresponding Wilson action is 

Sw = - a  4 ~ ~a ¢(n) (r - %) U~(n) ~b(n + a , )  + ¢ (n  + a , )  (r + %) 
n 

U~(n)¢(n)]  + a 4 ~ n  ( m +  - ~ )  ¢ (n )¢ (n )  (86) 

(sT) 

and the propagators for the spurious modes acquire masses which diverge as ~a 
as in the one-dimensional case. 

The Wilson action manifestly breaks chiral symmetry for m -- 0, since under 
the transformation ¢ --+ eia~5¢, ¢ ¢  --+ ~ei2~5¢.  As long as the contribution 
of the symmetry breaking term can be made arbitrarily small, its presence does 
not interfere with the physics of spontaneous symmetry breaking. 

Wilson Fermions provide a framework for completely solving the doubling 
problem which yields the correct physics in the limit of sufficiently small lattice 
spacing a. The primary disadvantages are associated with the lack of explicit 
chiral symmetry for finite a. 

4.3 S taggered  Fermions  

An alternative way of treating Fermions on the lattice is the use of staggered or 
Kogut-Susskind Fermions [19]. This method does not avoid the no-go theorem, 
but rather reduces the number of doubled (unphysical) Fermion species by thin- 
ning out the Fermion degrees of freedom and has the advantage of maintaining 
explicit chiral symmetry. The basic idea is to transform the Fermion field ope- 
rators to a new representation in which the naive Fermion action is diagonal in 
the Dirac indices, so that the naive Fermions represent ND copies of the new 
Fermions, where ND is the number of Dirac components. By keeping only one 
of these ND copies, one effectively thins the degrees of freedom by 1/ND. 
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A convenient choice for the transformation of the Fermion field in four space- 
time dimensions is 

7o ~6 72 73 x(n) , 
(8s) 

= 73 72 71 7o • 

To see how this transformation renders the naive action (72) diagonal, consider 
a typical term: 

n3^,n2 nl^.no no^,nl (n2+1)^ n3 ¢(n) 72 ¢(n + a2) = )~(n) 7a r2 71 to ~f2~fO r l  'T2 ~3 X( n 7t- a2) 

= (-1)n°+nl)~(n) x(n  + a2) 

(s9) 

where 

,qu(n) - ( -1 ) , ,=o (91) 

The naive action may thus be written 

[ ] SF -.~ a 4 Z ~a ~/a(n) )~(n) U s ( n  ) x ( n  -[- a s )  - U s ( n  - a s )  x ( n  -- a s )  
n 

+)~(n) m x(n) } (92) 

where x(n) now represents any one of the ND Dirac components and may thus 
be regarded as a scalar. By (88), it is clear that the components of X are specific 
linear combinations of the doubled Fermion fields. 

It is particularly simple to see how staggered Fermions work in the case of 
free, massless particles in one dimension described by the Hamiltonian (76). The 
Dirac equation has two components, and in this case the staggered solutions X 
for a given k are just the sum or difference of the physical mode Ok and the 
sawtooth mode ~ - k  and are sketched in the bottom portion of Fig. 8. Note 

that for each of the staggered solutions, half of the points, either the even or odd 
points, correspond to the physical Fermion mode and the other half of the points 
are identically zero. Thus, the thinning of the degrees of freedom corresponds to 
having essentially doubled the lattice spacing. The maximum momentum which 
can be sustained on the lattice with spacing 2a is ~ ,  so that for both the even 
site mode and the odd site mode only the portion of the spectrum in the upper 

7t ~* 
right portion of Fig. 8 between - ~ and ~ contributes and there are no spurious 
low-mass modes. In the special case of one space dimension where there are two 
Dirac components and two naive Fermion modes, staggered Fermions completely 
resolve the doubling problem. 

where the factor ( -1)  no+"1 arises from anticommuting 72 through the product 
70 71 and the remaining 7 matrices combine pairwise to unity. By the same 
argument, 

¢(n) 70 ¢(n + a.) = os(n) ~(n) x(n + au) (90) 
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If one were to solve Hamiltonian field theory in three space dimensions, re- 
duction of the 23 naive Fermions by a factor of 1/4 for the four Dirac components 
would leave two species of staggered Fermions which one could regard as two 
degenerate flavors corresponding to up and down quarks. In Lagrangian field 
theory in 3 + 1 dimensions, the 16 naive Fermions are only reduced to four 
flavors of staggered Fermions. 

The principle advantage of staggered Fermions is the residual chiral symme- 
t ry  of the lattice action. The mass is thereby protected from renormalization 
and it is possible to define a lattice axial current. So as to avoid spurious chiral 
symmetry breaking due to the presence of a chiral symmetry  breaking term in 
the lattice action as in the case of Wilson Fermions, it is useful to use staggered 
Fermions. The chiral order parameter  is calculated by evaluating 

(¢¢)  = Z -1 f :D¢:D¢:D(U) e - ~ M ( U ) ¢ - s ( u )  
J (93) t '  

= Z -1 /~) (U)  elnDetM(U)-S(U)M-I(u) 
Q 

It serves as an order parameter  for the case of zero quark mass and is also used as 
an indicator of a phase transition at finite quark mass. The price one pays for the 
staggered Fermions is the necessity of having an integer multiple of four flavors. 
Thus one cannot directly study the case of three flavors, where the presence of a 
cubic invariant implies a first-order transition (cf. the section on the confinement 
transition), or the physically relevant case of two flavors of light quarks. 

The primary disadvantage of staggered Fermions is therefore the existence of 
four flavors in four dimensions. In addition, the lattice resolution is cut in half 
relative to Wilson Fermions, and physical operators are complicated, non-local 
combinations of X fields. Hence, for most purposes in studying hadronic physics, 
it will be desirable to use Wilson Fermions. 

4.4 Hopping Parameter Expansion 

Consider Wilson Fermions with the action (86) and define the hopping parameter  

1 1 
t~ . -  2ma  + 8r 2 M a  (94) 

and rescaled Fermion fields 

:= (Ma4)  1/2 ¢ , (95) 

4 r  where M = m + ~ enters as a mass term in (86). The action then has the form 

n . (96) 

~ ( n + a . ) ( r + 7 . ) U ~ ( n ) ~ ( n ) ] )  • 
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The fields have been scaled such that the diagonal term is now unity, and the 
hopping parameter a specifies the strength of the nearest-neighbour coupling via 
link variables. The partition function for an SU(N) gauge theory in the presence 
of Fermions with the action (96) reads in a slightly schematic form 

f -~ (l+~v)~-~ ~ (1-~ Re T~ Vo) 
Z = d~ dO d(U) e ° (97) 

Just as the strong coupling expansion provided insight into solutions of lattice 
QCD in the pure gauge sector, the hopping parameter expansion provides ana- 
logous insight into solutions in the presence of Fermions. In the strong coupling 
regime,/3 = ~-~ is small and the U's distributed according to exp{-/JS(U)} are 
nearly random. Thus, the average of aU is in some sense small, and we may ex- 
pand the exponential in (97) in the hopping parameter a. The Fermionic content 
of the partition function may then be written schematically as 

_ ~ ~ n  ,/,n 
Z(U)= d~d~Pe n ~ ( ~ U ~ P ) ( ~ U ~ P ) . . . ( ~ U ~ P )  . (98) 

Using Wick's theorem, this integral is equal to the sum of all contractions, where 
because the matrix in the exponent is the unit matrix, the contraction ( ~Pm ~n ) 
is just 5m,n. Thus, each factor ~ U which connects one site to an adjacent site 
must be connected to another hopping term ~ U emanating from the new site, 
and the net result after integrating out the Fermions is the sum of all possible 
closed chains of ~U in which the U's are oriented head to tail 

Z(U) = Z ~k Un, nzUn2ns .. "Unknl • (99) 

The full partition function is then the integral over gauge fields of all such loops 
weighted by the gluon action. 

Consider now the hopping parameter expansion for a meson propagator (see 
(105) in the subsequent section) 

( ~(x, t)r ~V(x,t) ~(o, o)r g,(O, O) ) = 

= Z -1 _/d~dff'd(U) e- ~ # ~ e  - ~-'~'~v~ x (100) 

(x,O \ / (0,o) 

where kv F ~P represents a combination of Fermion fields of the appropriate flavors 
and 7 matrices to create or annihilate the desired meson state. As before, we 
expand exp{- ~ kv ~U ~P) and apply Wick's theorem to obtain all contractions 
of ~ and ~P. The lowest order (in ~) non-vanishing contribution is obtained by 
creating two straight chains of U's, one from (0, O) to (x, t) and the other from 
(x, t) to (0, 0). Higher-order contributions are obtained by elongating these two 
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chains to form any closed path including the points (0, 0) and (x, t) and by 
adding any additional number of separate closed loops of U's. The complete 
propagator is the sum over all such loops of U's 

~F~'(x,t) ~F~'(O,o ) = Z -x d(U) e o (101) 

×  N,,ok. (U...  U)00,x  (U...  U)...  (V.. .  V). 
loops 

Note that the remnants of the Fermions at this stage of the calculation are just 
Wilson loops, again underscoring our previous interpretation of Wilson loops as 
the world lines of quarks. The simple quark model of the meson is described by 
the sum over all time histories of the loop (U U . . .  U)00,x t representing a quark 
and antiquark propagating from (0, 0) to (x, t) and the excitation of quark- 
antiquark pairs out of the vacuum is described by the additional quark loops 
(U U . . .  U). The integral over the gauge fields in (101) now proceeds precisely 
as in the case of the Wilson loop discussed in the pure gauge sector. Each of the 
closed loops in (101) must be tiled with plaquettes, with the lowest-order con- 
tribution corresponding to the minimum tiling required to eliminate all exposed 
links and higher-order contributions corresponding to more elaborate surfaces. 
The general structure which emerges is thus a sum over Fermion loops covered or 
connected with gluon membranes, with the partition function dictating the opti- 
mal compromise between short Fermion paths and minimal membranes favored 
by small/3 and small aU and the higher entropy of longer Fermion paths and 
complicated surfaces. The physical picture of a meson state which emerges when 
one observes the configuration on a single time slice between (0, 0) and (x, t) is a 
quark-antiquark pair connected by a flux tube. When one works out the explicit 
factors for SU(N), one can also see the 1IN expansion emerge naturally, with 
the dominant contributions arising from planar diagrams with no additional Fer- 
mion loops. Propagators for baryons are similar to those for mesons, with three 
chains of U's starting at the point (0, 0), corresponding to three quarks of the 
appropriate flavors, and terminating at (x, t). The surface between these chains 
must again be tiled with plaquettes, and the leading membrane contribution in 
this case, when cut on a single time slice, corresponds to a Y configuration of 
flux connecting the three quarks. 

Instead of expanding the Fermionic action ~ M(U)• = ~ (1 + a U ) ~  in 
powers of ~, one can alternatively write the result of integrating out the Fermions 
directly in terms of M(U) 

( ~ . . . ~ . . . ~ ) =  
=z-1/d(U)d,i,d~, e-~'M(U)~-S(U) ( ~. . .~, . . .~ ) 
= Z  - l [ d ( U )  e l n D e t M ( v ) - S ( v )  ~ M-I(U)M-I(U)...M-I(u). 

d con t rac t ions  
(102) 
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If one now expands M -1 = (1 + aU) - I  and lnDet  M(U)  --- tr  ln(1 + aU) in a, 
one observes tha t  one obtains the previous hopping parameter  expansion with 
all the quark propagators joining the ~ 's  and ~ ' s  in ( ~P ~ . . .  ~P ~ ~ . . .  ~ > arising 
from the M - l ' s  and all the additional closed quark loops arising from expansion 
of In Det M. As before, the quark lines thus obtained are tiled with plaquettes 
of the proper orientation from S(U). 

This knowledge of the role of the various terms in (102) allows us to under- 
stand the physics of the so-called quenched approximation, which might more 
properly be called the valence quark approximation. The quenched approxima- 
tion corresponds to omitt ing the term ln Det M(U) in the exponent of (102) 
when performing the integral over gauge fields f / ) ( U ) .  From the preceding ar- 
gument, this approximation omits all t ime histories in which dynamical quark 
loops are excited out of the Fermi sea. Hence, only valence quarks connecting the 
field operators in ( ~P ~ ' . . .  ~P ~ ~ . . .  ~ > are included, and the integral over gluon 
fields incorporates the QCD interactions of these valence quarks to all orders. 
Technically, the motivation for making the quenched approximation is the fact 
that  the stochastic evaluation of the path integral is immensely more difficult 
when the non-local term In Det M(U) is included in the action than when one 
must only t reat  the local term S(U). 

Note that  the quarks can still travel back and forth in time on the spacetime 
lattice so, for example, chiral logs are still taken into account and hadrons are 
still dressed at large distances by meson clouds [20]. The renormalization group 
calculations for the continuum limit have to be performed with the number of 
flavors n I = 0 yielding stronger asymptotic freedom. So for example, the ~- 

r 

potential at short distance is slightly too weak and hence meson wave functions 
at short distance are too small and the resulting decay constants are too weak. 

4.5 H a d r o n i c  O b s e r v a b l e s  

To discuss hadronic observables, it is convenient to consider idealized calculations 
in which one filters in the pure gauge sector for a long enough time to filter out 
the QCD vacuum state {0>. (In practice, calculations usually do not completely 
filter out the ground state in the pure gauge sector, so the expressions here 
must have {0> replaced by sums over a sequence of states having the quantum 
numbers of the vacuum. The basic idea, however, is correct and the resulting 
formulae are more transparent.)  One then creates a state Jr{0> of the desired 
quantum numbers by acting on the vacuum with an appropriate source J ,  filters 
the lowest eigenstate with these quantum numbers by evolution in Euclidean 
time, and projects onto specified momentum states as required. A local field 
operator we may use for a 7r + at space-time point x = (x, t), for example, is 
given by 

J~(x) = d(x)~fsu(x) (103) 

where u and d denote up and down quark fields, respectively, and the "Y5 makes 
the operator  pseudoscalar. As an alternative to this local point source, it may be 
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preferable in some applications susceptible to large stochastic errors to use non- 
local extended sources, especially if the physical particle is considerably larger 
than the lattice spacing. One will save computer time and improve accuracy of 
the calculation, if the overlap of the state created by the source and the physical 
hadron state is as large as possible. 

For the proton, a local field with the correct transformation properties is 

J:Cx) = c104) 

where C = 7274 is the charge conjugation matrix and i, j ,  k denote color 
labels, and a, f~, 7 denote Dirac indices. Several comments concerning this 
operator may be helpful [21]. Since quark and antiquark have opposite parity, 
the combination uC75d transforms as a Lorentz scalar so that  JR transforms 
like u~ and thus as a spin 1/2 Dirac spinor. The color variables are expli- 
citly antisymmetrized and the antisymmetry of the Grassmann variables com- 
bined with the fact that  the local operator carries no orbital angular momen- 
tum assures the symmetry of the spin-flavor wave function. The non-relativistic 
limit also agrees with the non-relativistic quark model, since for the upper 
components uCT~d : u(-ia2)d : -u%d¢ + u~d t and the symmetrized state 
S {u, (u~d4 - u~d,)} is the SU(6) proton wave function. 

Expectation values of operators are calculated by using two widely separated 
sources J, j t  to create a state of the desired quantum numbers, placing the 
operator to be measured in between where the lowest state has been filtered out, 
and projecting the momentum. 

An important quantity derived from these hadronic sources is the vacuum 
vacuum correlation function of hadronic currents (Fig. 9(a)) 

(0 Tgh(x,t)J?h(O,O) O) (105) 

which is calculated for the 7r + by evaluating 

c0 Cx, c0, 0) t 0> : 

] l)(5¢)I)(U)e-SM(U)¢-s(u)d(x, t)75u(x, t)a(O, 0)Tsd(0, 0) = C106) 

/ / ) ( U ) e l ,  Det (U)-S(U)M-1 ( U )xt,oo 75 M~o~xt 75 

on a mesh of temporal extent from - T  to T + t with hard wall boundary con- 
ditions at the time boundaries. 

Its spatial integral is the two point function Cghj h (t), whose physical content 
becomes clear by transforming Jh (x, t) with translation operators in x and t and 
inserting a complete set of hadronic states Inp), where n denotes the n th intrinsic 
excited state of the hadron and p denotes its momentum. Thus, 

Cj~j~(t) f dax(Oletg-~xPjh(O,O)e-tn+'xP ~-~ f ,3 'np)Cnp[ j , ,o  0~lO\ a p ~  hi, , )l / " 

(107) 
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Fig. 9. Sketches of  two hadronic observables. (a): Vacuum correlation function for the 
7r + (105). (b): Quark density density correlation function for the ~r + (110). The dashed 
lines denote the propagators connecting quark creation and annihilation operators. 

The integral over x projects onto zero momentum and for large times t only the 
lowest hadron survives, ~ e -rE-,° [nO)(nO[ --~ e -tMh [h)(h I. Hence, 

n 

e--Mht 
Cj~j~(t) -~ ~--a-~--. I (h lJh lO) l  2 V t ~ o o  

LlVl h 
(108) 

which enables us to read off the hadron mass from the large t decay and pro- 
vides the factor I(h [Jh[ 0/I required to normalize other quantities. In practice, 
since the two-point correlation function coincides with the Bethe-Salpeter  wave 
function at zero separation discussed subsequently, it is not necessary to calcu- 
late it as a separate entity. Operationally, as seen in (106), the calculation is 
straightforward. Having generated a set of gauge field configurations sampling 
e -s (U)  in the quenched case or e T M  M(U)--S(U) in the case of full dynamical 
quarks, the combination of propagators M -1 (U)xt,oo75M -1 (U)00,xt~5 is simply 
averaged over these gauge fields. 

Results of hadron masses (Table 1) in the quenched approximation agree 
very well with experiment in all channels except for the 77', where closed loops 
which are not contained in the quenched approximation are known to give the 
main contribution to the mass. 

Table  1. Calculated hadron mass ratios on lattices up to 32 ~ x 30 x 40 in the quenched 
approximation using Wilson Fermions with inverse coupling up to g-~ = 6.17. Results 
are extrapolated in quark mass, lattice spacing, and volume and are compared with 
the experimental values. [22] 

ratio 
lattice 
expt. 

mNlm. m,~l,~, inK-Ira. ~+Im. m_---Ira, m~l~. 
1.216(104) 1.565(122) 1.166(16) 1.333(32) 2.055(65) 2.296(89) 

1.222 1.604 1.164 1.327 1.996 2.177 
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Vacuum correlation functions have a number of other appealing features [23]. 
In many channels, they have been determined phenomenologically by using di- 
spersion analysis of e+e - hadron production [24] and T-decay experimental data. 
When they are defined at equal time, they may be calculated on the lattice and in 
the interacting instanton approximation [25] [26] as well as by using sum rules [27] 
(cf. the next chapter). They complement bound state hadron properties in the 
same way scattering phase shifts provide information about the nucleon-nucleon 
force complementary to that provided by the properties of the deuteron. Just 
as nucleon-nucleon scattering allows one to explore the spin-spin, spin-orbit and 
tensor components of the nuclear force at different spatial separation in much 
more detail than deuteron observables which reflect the composite effect of all 
channels and ranges, so also the interaction or "scattering" of virtual quarks 
and antiquarks from meson sources at different spatial separations allows one 
to obtain much more detailed information about quark interactions for different 
channels and spatial separations than the composite effects reflected in hadron 
bound states. 

Much of the richness of the study of these correlation functions derives from 
the different physics involved at different spatial separations. By asymptotic free- 
dom, at extremely short distances the interactions between quarks must become 
negligible, and for dimensional reasons must fall as x -6. For slightly larger di- 
stances, where interactions are small but non-negligible, one should be able to 
use the leading terms in the Wilson operator product expansion to describe the 
deviation. At still larger distances, the full complexity of non-perturbative QCD 
comes into play, and one may use this region to test and refine QCD motivated 
models such as the interacting instanton approximation (cf. below). Finally, at 
very large separation, the decay of the correlation functions is governed by the 
lightest hadron mass in the relevant channel as seen above. 

As a result of this diverse range of physics at different spatial separations, 
it is clear that definitive lattice calculations of correlation functions provide an 
exceedingly useful supplement to accessible experimental data in allowing one 
to quantitatively explore and improve approximations based on the operator 
product expansion, sum rules, and interacting instantons. 

The lattice calculations discussed subsequently [23] were performed on a 
163 × 24 lattice in the quenched approximation with Wilson Fermions at an 
inverse coupling 6/g ~ = 5.7, corresponding to a physical lattice spacing defined 
by the proton mass of approximately a = 0.17 fm. The spectral density function 
is parameterized phenomenotogically as: 

f ( s )  = A 2 ~ ( s - M ) + f ~ ( s ) O ( s -  so) (109) 

where A is the strength of the coupling of the current to the lowest bound state or 
resonance with mass M, fc is the lowest order perturbative result for the spectral 
function, and So is the continuum threshold. This spectral function been fitted to 
the lattice correlation functions and yields good agreement with phenomenology 
and provides another way to calculate hadron masses. The values for parameters 
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of the spectral function are shown in Table 3 and vacuum correlation functions 
for the n ,  p and nucleon are shown in Fig. 10. 
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Fig. 10. Vacuum correlation functions for the vector channel (denoted by V), the 
pseudoscalar channel (denoted by P), and the nucleon channel (denoted by IV). Ex- 
trapolated lattice data are denoted by the solid points with error bars. Fits to the 
lattice data using the phenomenological form (109) are given by the solid curves, with 
the continuum and resonance components denoted by short dashed and dotted curves 
respectively. The empirical results determined by dispersion analysis of experimental 
data in ref. [24] are shown by the long dashed curves. The open circles denote the 
results of the random instanton vacuum model of ref. [26]. The results from the QCD 
sum rule calculation of re£ [27] in (N) are indicated by the dot-dot-dashed lines. [23] 

The lattice result for the p correlation function (Fig. 10(V)) is reasonably 
close to the phenomenotogical result obtained by Shuryak [24] from a dispersion 
analysis of e+e - -¢ even number of r's. The fact that the phenomenological 
result lies below the lattice result follows from the fact that resonance peak 
scales as )~2/M~ and the lattice mass lies below experiment while the coupling 
constant agrees with the phenomenological value. The result of the instanton 
model [26] is qualitatively similar, although lower than phenomenology. The most 
salient physics result in the p channel is the fact that although the free correlator 
falls by four orders of magnitude, the ratio of the interacting to non-interacting 
correlators remains close to one. Although the ratio must approach unity very 
close to x = 0 by asymptotic freedom and there is no leading order 't Hooft 
instanton induced interaction in this channel, the ratio remains close to unity 
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for much larger distances than any simple arguments suggest. This feature, which 
has been called superduality, indicates that the net QCD interaction is extremely 
weak in this channel, presumably because of a high degree of cancellation. 

The pseudoscalar (~r) channel (Fig. 10(P)) exhibits the strongest attraction 
and the most dramatic dependence on the quark mass, reflecting the special r61e 
of the pion as a Goldstone boson. Note that because of the light pion mass, 
the peak of the resonance occurs far outside of the range in which the data is 
fit. Nevertheless, the extracted mass and coupling constant agree well with the 
empirical results. 

For the nucleon channel, one observes that the lattice results are quite con- 
sistent with the sum rule result of ref. [27], shown by the dot-dot-dash curve in 
Fig. 10(N). In addition, although there are substantial statistical errors at large 
distance, the random instanton vacuum model is also close to the lattice results 
[26]. 

A more detailed analysis, including the discussion of lattice errors and arti- 
facts, can be found in [23]. In addition, other observables that have been cal- 
culated on the lattice include form factors (recent results in [22]) and magnetic 
moments [28] [29], and all show reasonable agreement with experiment. 

To characterize the quark distribution inside hadrons, one may calculate the 
quark density density correlation function (Fig. 9(b)) [30][31][32] 

(hip ql (x, t)p q~ (0, t)lh ), (110) 

where pq -~ ~7°q, ~75q. Physically, this correlator specifies the probability to 
find two quarks ql, q2 at a spatial separation x inside a hadron h. As emphasi- 
zed in [33], the correlation function in a hadron measures contributions from all 
the multiquark-antiquark components of the Fock space, and thus, in principle, 
provides valuable complementary information to that of the wave function con- 
sidered in the next section. There, plots of correlations function in hadrons on 
the lattice will also be discussed (Fig. 17). 

5 Insight into Hadron Structure 

Thus far, we have considered the calculation of physical observables and their 
agreement with experiment to show that lattice QCD provides a valid non- 
perturbative solution of continuum QCD. However, if lattice QCD only serves 
as a black box to provide numbers which agree with experiment, we will still 
be far from understanding QCD. Hence, one of the major thrusts of my recent 
research has been to use lattice QCD as a tool to gain insight into hadron 
structure. 

5.1 W a v e  F u n c t i o n s  

Wave functions play a central r61e in our understanding of many-body systems 
in non-relativistic Quantum Mechanics. Examples include hand theory, Hartree 
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Fock, BCS, and Laughlin wave functions for condensed matter  systems, and 
Jastrow, independent pair, Faddeev, and shell model wave functions for nuclei. 
It is thus natural to seek analogous understanding of hadronic structure in terms 
of quark and gluon wave functions. 

Specifying the wave functions of b o u n d  states is complicated. One cannot 
just focus attention on some Fock space component of the wave function and 
ask, for example, what the probability is of finding a quark-antiquark pair in a 
meson separated by some distance x. Rather one must also specify the gluonic 
component of the wave function either implicitly or explicitly. 

Consider, for example, the q~ wave function O(x), that  is, the probability 
amplitude to find a q~ pair separated by a distance x = Ix[ inside a meson. 
To measure it on the lattice [34], one creates a state with the correct mesonic 
quantum numbers and evolves it in Euclidean time as described above in order 
to filter out the mesonic ground state [h). One then may calculate (Fig. l l (a))  

• n(x) := (Ol~l(x,O)Fq(O,O)lh) (111) 

where F depends on the Dirac structure of the ground state hadron [h) and 10) 
is the QCD vacuum in the absence of Fermions. 

As it stands, this expression is gauge dependent: it is not physically well 
defined and numerical evaluation on the lattice would yield zero because of the 
integration over all group elements without gauge fixing. If one chooses a specific 
gauge, this quantity becomes well defined, but it is essential to appreciate the 
extent to which the gauge choice specifies the gluon configuration and thus affects 
the physical result. 

For example, if we select the Coulomb gauge, we actually specify that  each 
quark is surrounded by the gluons corresponding to the static Coulomb field 
between the antiquark at x and the quark at the origin (Fig. l l (d)) .  Although 
it is hard to write the gluon configuration in nonabelian QCD, it is instructive 
to note that  in the Abelian case, one can write down the following explicit 
expression for the photon field when we specify Ao = 0 and Coulomb gauge: 

 c(x) := (014(x)ref  3yE .... '°(Y)A(y)q(0)Ih) (112) 

where Estatic is the static Coulomb field of a pair of opposite charges separated 
by a distance x. The implied photonic component of ~c (x) is thus 

(0 i exp / d3y Estatic(Y) • A(y)  , 

which is sketched in Fig. 11 (d). The lattice wave function would then specify the 
probability that  an electron-positron pair were separated by a given distance and 
that  the photons were in the configuration given by the static Coulomb field. 
Clearly this wave function could be small because the leptons are unlikely to 
be found at that  separation, because the photons are not in the configuration 
specified by the Coulomb field, or some combination of the two. 
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Fig. 11. Alternative defnitions of mesonic wave functions (top row) and the corre- 
sponding gluonic configuratons (bottom row). The meson source is denoted by S, 
products of link variables U are indicated by solid lines, and quark propagators are 
denoted by dashed lines. (a), (d) Coulomb gauge wave function (111/112); (b), (e) 
axia/gauge wave function (113); (c), (f) adiabatic wave function (114). 

Another alternative is to choose an axial gauge with A,  = 0 along the line 
joining the quark and antiquark. This choice corresponds to the gauge invariant 
wave function: 

i f dx'A~(~') 
• , (x )  := (010(x)FPe o q(0)[h). (113) 

As shown in (Fig. l l ( b ) ) ,  the quark and antiquark are connected by a product of 
link variables U along the path connecting them. Physically, the gluonic compo- 

z 

nent (01P expi  f dx'Az(x') is that of an infinitely thin string of glue (Fig. l l ( e ) ) .  
o 

The wave function is now to be interpreted as the probability amplitude to find 
a quark and antiquark separated by distance x times its overlap with a string of 
gluons in a hadron, and this latter will cause a considerably stronger fall-off of 
the wave function ~P8 with increasing distance than that of ~vc (Fig. 12). 

Physically, there is no reason to expect the Coulomb gauge wave function to 
be an accurate approximation, and clearly a string wave function is too localized 
to give a large overlap with the true wave function. The most realistic definition 
of the gluon wave function that we have been able to calculate is the adiabatic 
wave function, corresponding to the ground state configuration of gluons in the 
presence of a static q0 pair at separation x (Fig. l l (c ) , ( f ) ) :  

~Pa (x (~2(x)[~l(x)Fq(O)[h) (114) 
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[O(x)) := lim U ° try U°t n\ 
n ~ o o  O t , O t + n V O t + n , y t + n  y t , y t + n  " /  " 

When the temporal  links are extended sufficiently far, the ground state flux tube 
is projected out, and in practice, it is sufficient to use 2 to 4 time steps [34]. 
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Fig. 12. Comparison o f  density-density correlation functions and Ik~l 2 for lr ( le f t )and 
p (right) mesons as a function o£ q~ separation in units o f  0.2 i'm in the quenched 
approximation with the Wilson action on a 164 lattice at 6/g 2 = 5.7. [34] 

A comparison of the squares of each of the wave functions discussed above 
with each other and with density-density correlation functions is shown in Fig. 
12. The  first point to note is the fact that  the overlap between the true wave 
function at any spatial separation and the gluon wave function specified by the 
gauge choice or adiabatic condition increases slightly as one goes from ~8 to ~Pc 
and substantially when one goes to ~Pa, showing that  the adiabatic wavefunction 
is much more physical than either of the fixed gauge choices. Ideally, one would 
like to compare the overlap of the adiabatic wave function with the square of 
the full quark-antiquark component of the exact wave function. A first step in 
this direction is comparison of ]kva]2 with the density-density correlation function 
(pp). However, the density-density correlation function contains the contributi- 
ons of all Fock-space components, so a more relevant comparison is with the 
density-density correlation function (pp)qq, which has been projected onto the 
quark-antiquark subspace. On the lattice, this projection is accomplished by 
calculating propagators from the left and right sources with hard-wall boundary 
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conditions on the time slice containing the density operators, so that the quark 
and antiquark world lines can only cross the central time slice once. Comparison 
of (pp) with (pp)qq (normalized to one at the origin) in Fig. 12 shows that qq 
pairs indeed play a large role in dressing the hadron at large distances. Fur- 
thermore, comparison of the adiabatic wave function [~a[ 2 with the projected 
density-density correlation function (pp)q~ indicates that the adiabatic approxi- 
mation is reasonably accurate. 

To summarize, these results show a large and significant effect of the intrinsic 
gluon component in the definition of a hadron wave function and that the overlap 
with the gluons in the hadron increases substantially when going from ~8 or ~c 
to On. Furthermore, a q~ pair in the adiabatic gluon ground state is quite close 
to the projected density-density correlation function, (pp)q~. 

5 . 2  I n s t a n t o n s  o n  t h e  L a t t i c e  

Another way in which we seek to use the lattice as a tool to understand hadron 
structure is to use it to explore the role of instantons. In principle, since we are 

numerically evaluating a path integral, it should be possible to use the numerical 
results to identify those configurations which are most important in the s e n s e  

that they dominate the path integral. In cases that can be solved analytically, we 
know that the dominant configurations are those corresponding to fluctuations 
around the paths which make the action stationary. In QCD, although o n e  c a n  

t r e a t  instantons analytically in the dilute gas approximation, there is no known 
way to study their role analytically in the true QCD ground state. Hence, we will 
use the lattice to find the stationary configurations closest to the configurations 
determined numerically which sample the gluon ground state, and thereby reveal 
the instanton content of these vacuum configurations. 

Having extracted the instanton content of the gluon configurations, it is then 
possible to study the role of instantons in hadron structure by comparing ob- 
servables calculated with all gluonic excitations and those calculated with the 
instantons alone. There is a large body of theoretical and phenomenological evi- 
dence from the work of Shuryak et al. [25][26] and Diakonov and Petrov [35] 
suggesting that for light quarks, propagation of quarks between the zero-modes 
associated with each instanton in the vacuum dominates the physics. The lattice 
provides an ideal laboratory to quantitatively test this picture and compare t h e  

phenomenological parameters of instanton models with those of QCD. 
In this section, all calculations are again performed in the quenched appro- 

ximation, in which the gluon configurations are not influenced by quarks and 
may therefore be fully described independent of the specific hadronic observable 
being investigated. 

Before studying instantons on the lattice and comparing observables in an 
instanton background with the exact lattice results [36], it is useful to review 
briefly the basic features of instantons and the instanton gas model. More tho- 
rough introductions to instantons in continuum QCD may be found in recent 
lecture notes [37] and [38] and references therein. 
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Consider, as a pedagogical example, paths a particle can take in a periodic 
potential (Fig. 13(a)) with minima at points xi = iL,  i E Z equivalent to the 
problem of a particle in a continuous potential on a circle with circumference L. 

X .  2 X_ l 

(b) 

(d) l (e) 

X .  1 

V(x) 

X 0 X l X 

t (c) l~.,_~.~. ) 

X 0 X I 

x 

x 

x 

Fig. 13. Particle in a periodic potential (a) and representatives of two classes of  con- 
tributions to the path integral: (b): Path about one well, indicating also the local 
minimization procedure (cooling) for a point Xc on the path; (c): Path connecting two 
wells. (The large fluctuation into the well about x~ may be interpreted as a close kink- 
anti-kink pair.); (d),(e): The result of several cooling steps on the paths (b) and (c). 

Classically, a particle with energy E < Vmax cannot leave its well about 
the "classical ground state" xi, but already the semiclassical WKB (stationary 
phase) approximation gives a nonzero probability for the particle to tunnel from 
the well about xi to the one about Xi+x (xi-1)(Fig. 13(c)). In the picture of a 
particle on a circle, this corresponds to a path winding once around the torus in 
the positive (negative) orientation, and so the path between xi and xi+l (xi-1) 
is said to have winding number +1 (-1).  Such a path is topologically stable 
because of its invariance under any continuous perturbation of the paths. The 
path of winding number +1 (-1) which has the highest probability weight in 
the path integral, i.e. the least action, is the kink (anti-kink). The analog of the 
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kink in QCD in four dimensions is the instanton. 
One may then characterize two classes of configurations which contribute to 

the path integral. Paths within a well, i.e. which are contractible on the circle, 
describe the perturbative regime. Paths which connect different wells, winding 
at least once about the circle, and which can be decomposed into a number of 
kink and anti-kink paths plus fluctuations describe intrinsically non-perturbative 
effects (Fig. 13(c)). This characterization becomes increasingly accurate as the 
energy difference between Vm~ and the particle energy increases. 

The Yang Mills equations of motion allow for infinitely many topologically 
distinct classical ground states besides A~ = 0, i.e. pure gauge configurations 
which carry different topological winding number n E Z. QCD-instantons (anti- 
instantons) are the classical self-dual (anti-self-dual) solutions to the Euclidean 
Yang Mills equations, localized both in space and time and having radial extent 
p. They have winding number +1 (-1) and interpolate between two topologically 
distinct but neighboring vacua. They have the minimum Euclidean action So = 
87t 2 
-~- and topological winding number 

1 f d a x d t  e~P~FgvFp~ = ±1 
Q0 - 327r 2 j 

(115) 

A configuration of N instantons and N anti-instantons has winding number Q 
and action S 

Q = N - ~ "  , S ~ ( N + N ) S 0  • (116) 

In the instanton gas model of Shuryak et al. [25][26] and Diakonov and Petrov 
[35], the QCD vacuum is characterized by a dense, stable distribution of instan- 
tons. In the simplest version [26], the instantons and anti-instantons are distri- 
buted randomly in space and have uniform size p and density n. The instanton 
size and density are determined phenomenologically. 

In order to isolate the contribution of instantons to a given gluonic configu- 
ration, one must remove the short-range perturbative fluctuations and extract 
the underlying semiclassical stationary solution. This may be achieved by locally 
relaxing or cooling the configuration, a method which is most easily described in 
the context of the periodic potential. 

Each point on the given path is varied such that the action along the path 
is minimized, keeping all other points fixed. Proceeding this way from point to 
point along the path, one minimizes the action locally (Fig. 13(b)). When this 
procedure is performed several times, the short wavelength, local fluctuations 
associated with perturbative gluons in QCD are removed most rapidly, while 
topologically stabilized instanton excitations are removed much more slowly. 
Thus, as the number of cooling steps increases, the configuration becomes more 
and more dominated by its instanton content (Fig. 13(d)/(e)). 

To monitor the instanton content in QCD (and decide how much cooling is 
necessary), one measures the topological charge density. The simplest discrete 
approximation to (115), which is adequate for a sufficiently smooth configuration, 



80 John W. Negele 

at lattice point n given by [36] 

1 
V(n) -- 327r2e"~PaRetr [V,,(n)Upa(n)] . (117) 

Its integral will be the number of instantons minus anti-instantons. In the dilute 
limit the topological susceptibility 

x = Q(n)  g + (118) 

gives the number of instantons plus anti-instantons in a given configuration and 
may be compared with the minimum the action of an instanton configuration 
can reach (116), Stain "~ (N + -~)So, in order to determine when the cooling 
procedure has reached the dilute limit. 

To provide a picture of how cooling extracts the instanton content of a ther- 
realized gluonic configuration, Fig. 14 shows the action density S(1, 1, z, t) and 
topological charge density Q(1, 1, z, t) for a typical slice of a gluon configuration 
before cooling and after 25 and 50 cooling steps. As one can see, there is no 
recognizable structure before cooling. Large, short wavelength fluctuations of 
the order of the lattice spacing dominate both the action and topological charge 
density. After 25 cooling steps, three instantons and two anti-instantons can be 
identified clearly. The action density peaks are completely correlated in position 
and shape with the topological charge density peaks for instantons and with the 
topological charge density valleys for anti-instantons. Note that both the action 
and topological charge densities are reduced by more than two orders of magni- 
tude, so that the fluctuations removed by cooling are several orders of magnitude 
larger than the topological excitations that are retained. From Fig. 14(e,f) we 
see that further cooling to 50 steps results in the annihilation of the nearby 
instanton - anti-instanton pair but retains the well separated instantons and 
anti-instanton. 

One should note that as useful as cooling is, it does have limitations. Whereas 
instantons on a manifold are stable, they are not necessarily stable on a discrete 
lattice. For the Wilson action, the action of an isolated instanton decreases as a 
function of p (instead of being independent of p as in the continuum) with the 
result that eventually, an isolated instanton will "fall through the lattice" after 
extended cooling. Also, prolonged cooling results in the annihilation of overlap- 
ping instanton - anti-instanton pairs, leaving only well separated instantons and 
anti-instantons. Thus, both large instantons, which are likely to overlap other 
anti-instantons, and small instantons, which quickly fall through the lattice, are 
preferentially removed from the ensemble. This effect is seen in Fig. 15, which 
shows the distribution of instanton sizes on a 164 lattice. Fortunately, for a sub- 
stantial range of p a window exists in which instantons are reasonably impervious 
to cooling. 

With this orientation, consider the ensemble averages of observables as a func- 
tion of the number of cooling steps shown in Fig. 16. As expected, the action is 
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Fig. 14. Cooling history for a typical slice of a gluon configuration at fixed x and y as 
a function of z and t. The left column shows the action density g2S(1, 1, z, t ) /6  before 
cooling (a), after cooling for 25 steps (c) and after 50 steps (e). The right column shows 
the topological charge density Q(1,1, z, t) before cooling (b), after cooling for 25 steps 
(d) and after 50 steps (f). [36] 
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Fig. 15. Distribution o f  instantons as a function of  size p, using 19 configurations. The 
number o f  cooling steps is shown at each figure together with the value o f  the threshold 
t determining whether two adjacent lattice points belong to the same instanton cluster. 

f3~] 

dominated by the short range fluctuations which are very strongly damped by 
cooling. Thus, the action decreases by several orders of magnitude in the first 
few steps. In contrast, the topological charge and susceptibility are much less 
affected by cooling. At cooling step 25, the averaged total action in units of a 
single instanton action is ~ 65 whereas (Q2) is --~ 25 ± 10 throughout the cooling 
process. This difference indicates that there are sufficient nearby instanton - anti- 
instanton pairs in each configuration that the dilute regime where (Q2) ~ N +/Y 
has not yet been reached. Since the nearby pairs continue to annihilate under 
further cooling, we only expect a clear plateau for the topological charge but not 
for the action in this region of cooling. It is only when the configurations are 
composed of well isolated instantons that plateaus for both action and topolo- 
gical charge would start to emerge. Here, this is expected to happen beyond 50 
cooling steps, where ( S ) / S o  and (Q2) are nearly equal. 

The combined information from Figs. 14, 15 and 16 suggests the following 
qualitative description of the cooled configurations. The configurations cooled 
with 25 steps are comprised of smooth, clearly recognizable instantons and anti- 
instantons and still retain many nearby pairs. The configurations cooled with 
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Fig. 16. Mean values of three observables as a function of number of cooling steps for 
19 configurations. (a) Total action in units of  a single instanton action So = 87r2/g 2. 
The uncooled value (S)/So = 20211 is far off scale and is not plotted. (b) Topological 
charge squared (118). (c) Topological charge (117). [36] 

50 steps consist of more dilute instantons with their total action starting to be 
dominated by the well isolated peaks. The small instanton contribution is also 
suppressed, giving rise to potential systematic error. One may regard the confi- 
gurations cooled with 25 steps as providing a more complete description of the 
instanton content of the original configurations, and I will therefore emphasize 
them in our subsequent calculation of hadronic properties. 

By cooling, the instanton content of 19 gluon configurations was extracted 
from a 163 x 24 lattice at ~ = 5.7 [36]. The string tension aa 2 monitoring 
confinement was measured on a 4 × 7 Wilson loop. The size of the Wilson loop is 
relevant, since the local minimization of the action corresponds to replacing each 
link by the sum of staples made up of the other three links of each plaquette to 
which the original link contributes. Thus, each cooling step replaces a Wilson 
loop by a bundle of loops smeared by at most one lattice site. So, as long as the 
number of cooling steps is much smaller than the size of the loop, one must still 
see confinement. However, once the number of steps is larger than the loop size, 
there is nothing to prohibit the string tension from going to zero and it appears 
to do so. 

A significant conceptual issue in comparing observables calculated using coo- 
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led configurations with uncooled results is how to change the renormalization 
of the bare mass and coupling constant as the gluon configurations are cooled. 
Clearly, as the fluctuations corresponding to gluon exchange are filtered out, the 
gluonic contribution to the physical mass and coupling constant change signi- 
ficantly. One may use the physical pion and nucleon masses to determine the 
hopping parameter  a and lattice size a for the cooled configurations. As will be 
seen below, a changes by -,, 16% after 25 cooling steps when the nucleon mass is 
used to set the scale, and within errors, the rho mass remains unchanged after 
cooling with this value of a. The other extreme would be to keep a fixed at the 
uncooled value and thus display what remains in the original path integral when 
only instantons are retained. This constant a would also be consistent with the 
constant topological susceptibility. It is a remarkable result tha t  these two extre- 
mes differ by only 16%, so that  even if one took the most conservative possible 
view of not changing the scale, the qualitative results would still not be changed 
significantly. 

Table  2. Summary  of properties of cooled configurations. The symbols S, ~r, a, p, n, and 
X denote the action, string tension, lattice spacing, instanton size, instanton density, 
and topological susceptibility. 

Cooling steps [(S)/So aa 2 a (fin) p (fro) n (fm -4) X (MeV4) 
0 [20 211 0.18 0.168 
25 [ 64 0.05 0.142 0.36 1.64 (177) 4 

% of uncooled value [ 0.3 27 84 
50 31 0.03 0.124 0.35 1.33 (200) 4 

Instanton Model [26] 0.33 1.0 (180) 4 

Table 2 shows the result of cooling and a comparison with the phenomenolo- 
gical values used in the instanton gas model [26]. It shows the dramatic decrease 
in the action and the string tension, indicating a very strong reduction in the 
perturbat ive and confinement effects. Although instantons do not contribute si- 
gnificantly to confinement, quarks will still be bound through the at tractive in- 
teractions arising from the 't Hooft interaction, or equivalently, through the zero 
modes for massless quarks associated with each instanton and anti-instanton. 
The close agreement between the parameters  of the instanton gas model [26] and 
our results clearly suggests that  we should obtain results similar to this model 
when we calculate hadron properties in the instanton configurations determined 
on the lattice. 

One extremely important  result is the fact that  vacuum correlation functions 
of hadron currents calculated with all gluon excitations and only instantons agree 
very closely. This is demonstrated by the close agreement of the hadron spectral 
function parameters determined from two point vacuum correlation functions 
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for uncooled and cooled configurat ions shown Table  3. Note  also the good agree- 
ment  between cooled and uncooled latt ice results with phenomenology  and the  
ins tanton gas model .  

Tab le  3. Hadron Parameters determined from vacuum correlation functions for un- 
cooled and cooled configurations. )~ denotes the coupling of the current to the ground 
state, c£ [23] and x / ~  denotes the continuum threshold (109). [36] 

Channel 

Vector 
(p) 

Pseudoscalar 
(~) 

Nucleon 

Delta 

ISource M (GeV) 

lattice (cool=00) 0.72 + 0.06 
lattice (coo1=25) 0.65 =t= 0.03 
lattice (cool=50) 0.70 ~= 0.05 
instanton ~ 0.95 ± 0.10 
phenomenology b 0.78 
lattice (cool=00) 0.156 ± 0.01 
lattice (cool=25) 0.140 a 
lattice (cool=50) 0.140 a 
instanton ~ 0.142 ± 0.014 
phenomenology b 0.138 
lattice (cool=00) 0.95 ± 0.05 
lattice (cool=25) 0.938 ~ 
lattice (cool=50) 0.938 e 
instanton" 0.960 ± 0.030 
Sum lq, ule ~ 1.02 ± 0.12 
phenomenology b 0.939 
lattice (cool=00) 1.43 ± 0.08 
lattice (cool=25) 1.06 :t= 0.04 
lattice (cool=50) 1.05 + 0.09 
instanton ~ 1.440 4- 0.070 
Sum Rule c 1.37 4- 0.12 
phenomenology b 1.232 

v ~  (CeV) 
(0.41 4- 0.02 GeV) ~ 1.62 + 0.23 

(0.385 4- 0.004 GeV) 2 1.38 + 0.05 
(0.410 4- 0.005 GeV) 2 1.42 + 0.04 

(0.39 + 0.02 GeV) 2 1.50 ± 0.10 
(0.409 ± O.O05GeV) 2 1.59 ± 0.02 
(0.44 ± 0,01 GeV) "J < 1.0 

(0.341 ± 0.010 GeV) ~ 1.05 ± 0.15 
(0.475 4- 0.015 GeV) 2 1.80 ± 0.18 

(0.51 + 0.02 GeV) 2 1.36 ± 0.I0 
(0.480GeV) 2 1.30 ± 0.10 

0.293 4- 0.015 GeV) 3 < 1.4 
0.281 4- 0.004 GeV) 3 1.47 ± 0.13 
0.297 4- 0.004 GeV) z 1.54 + 0.11 
0.317 4- 0.004 GeV) 3 1.92 4- 0.05 
0.324 + 0.016 GeV) 3 1.5 

1.44 ± 0.04 
0.326 ± 0.020 GeV) ~ 3.21 + 0.34 
0.285 ± 0.002 GeV) 3 1.91 + 0.08 
0.298 4- 0.003 GeV) 3 2.22 4- 0.06 
0.321 ± 0.016 C, eV) 3 1.96 4- 0.10 
0.337 + 0.014 GeV) z 2.1 

1.96 4- 0.10 

Instanton Liquid Model by Shuryak et al. b Phenomenology estimated by Shuryak 
and from the particle data book. c QCD sum rule by Belyaev and Ioffe [27]. J Used to 
fix the quark mass. e Used to fix the lattice constant. 

A second ext remely  impor t an t  result  is the  close agreement  of cooled and 
uncooled hadron  densi ty-densi ty  correlat ion funct ions (110) in the  g round  state  
of the  pion, p, and nucleon as shown in Fig. 17. The  s t r iking result  for bo th  the  
p and the  nucleon is the  fact t h a t  the spat ial  d is t r ibut ion of quarks  is essentially 
unaffected by cooling - ins tantons  alone govern the  gross s t ruc ture  of these 
hadrons,  as indeed they  also governed vacuum correla t ion funct ions of hadron  
currents  in these same channels.  

The  only case in which a noticeable change is b rought  about  by cooling is 
in the  short  dis tance behavior  of  the  g round  s ta te  of the  pion. This  difference 
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Fig. 17. Comparison o f  uncooled and cooled hadron density-density correlation func- 
tions for the pion (P) , p (V), and nucleon (N). The solid circles denote the correlation 
functions calculated with uncooled QCD [23], the open circles with error bars show the 
results for 25 cooling steps, and the crosses denote the results for 50 cooling steps. The 
rho and pion results are compared for M~ -- 0.16 GeV 2, and the nucleon results are 
compared for M~ = 0.36 GeV 2. The separation is shown in physical units using values 
o f  a from Table 2. All  correlation functions are normalized to 1 at the origin, except for 
the cooled pion correlation functions, which are normalized to have the same volume 
integral as the uncooled pion result. Errors for the uncooled results and for 50 steps, 
which have been suppressed for clarity, are comparable to those shown for 25 steps. 
[3e} 
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is understandable since in the physical pion, in addition to instanton-induced 
interactions, there is also a strong attractive hyperfine interaction arising from 
perturbative QCD which, combined with the attractive 1/r interaction, gives 
rise to the Coulomb cusp in the uncooled density. Despite this difference at the 
origin, which receives small phase space weighting, when the correlation functions 
are normalized to the same volume integral as in Fig. 17, one observes that the 
overall size and long distance behavior do not change appreciably with cooling. 
In contrast, in the p the combined effect of the hyperfine interaction and the 1/r 
interaction is much weaker, both because the hyperfine interaction is repulsive 
and because it is three times weaker. It is noteworthy that the cooled density- 
density correlation functions shown in Fig. 17 for the 7r, p, and nucleon are 
comparable within error bars. This uniformity strongly suggests that instantons 
set the overall spatial scale for these hadrons. 

The conclusion from these results is that instantons do indeed play a do- 
minant role in light quark propagation in the vacuum and in the low energy 
structure of hadrons. The picture which emerges, consistent with the instan- 
ton gas approximation, is that a light quark propagating in the QCD vacuum 
doesn't really respond to the details of the huge, short-wavelength fluctuations 
seen in the top of Fig. 14, but rather hops between the localized quark states 
corresponding to the zero modes associated with the instantons which become 
visible in the lower panels of Fig. 14. 

Although I believe these results provide substantial evidence for the role of 
instantons, there are several open questions which are the subject of current 
investigation. As discussed, the cooling we used is an imprecise filter, and we 
are currently refining it to avoid the problem of small instantons falling through 
the mesh and to decrease the amount of instanton anti-instanton annihilation. 
In addition, the quenched approximation is being eliminated by repeating the 
calculation with dynamical quarks. If the same qualitative behavior remains 
with these two improvements, the dominant role of instantons will be clearly 
established by lattice QCD. 

6 S u m m a r y  

As indicated at the outset, these lectures could only provide an elementary in- 
troduction to lattice QCD and an extremely limited survey of results. With this 
introduction you are now prepared to undertake the much more detailed treat- 
ments in the books by Creutz [2], Rothe [4], and Montvay and Miinster [3]. I 
hope these lectures will enable all of you to appreciate the usefulness of lattice 
calculations, follow the major research developments in this area and perhaps 
even motivate some of you to contribute to them. 
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1 Four Dimensional Gauge Theories and Instantons 

1.1 N o t a t i o n  

Nonabelian gauge theories deal with matrix-valued vector potentials which can 
be decomposed with respect to a basis of the Lie algebra of a gauge group G: 1 

A ~ ( x )  = A ~ ( x ) T  a (1) 

The group generators are in my notation [1] the (for SU(N) N 2 - 1) antihermi- 
tean, traceless matrices T a obeying the normalisation condition and algebra 

T at = - T  a tr T a T  b 1 ~ab (2) 

[T a, T b] = fabcTc (3) 

with fabc the totally antisymmetric,  real structure constants. 
The covariant derivative, field strength tensor and Lagrangean of the Yang- 

Mills field are given by 

V~, = O~ + Au acting on a representation of G, (4) 
abc b D~, = O~ + [A~,, . ] = T a (6aCc% + f A . )  acting on a rep. of the Lie alg., (5) 

F~., - F~ . ,T  a := [Vu, V~] = O~,A~, - O,,A~, + [A~, A~] , (6) 

CabcAb A~ (7) F~,,, = O~,A~ - O~,A~ + .  - . - - v  , 

1 pu~ apa  = ½tr FU~'F~., (8) ~ Y M  : - - ~ - -  " Izv 

* Lectures presented at the workshop "TOPICS in Field Theory" organised by the 
Graduiertenkolleg Erlangen-Regensburg, held on October 12th-14th, 1993 in Kloster 
Banz, Germany 

x Summation over repeated indices is understood, as is the use of the natural system 
of units h = c = 1. 
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Note that  we have scaled the potentials so that  the coupling constant is absorbed 
into At`. To make contact with the conventions used in perturbation theory (eg. 
[2]), one should substitute - i - ~  for T a, -igA~---~ for At,, where A a are the 
(hermitean) Gell-Mann matrices, and in addition replace F t `~  by - i g F  t`~'a. 
The Lagrangean density (8) remains unchanged. 

Under a gauge transformation g(x) E G at a point x in spacetime, the fields 
transform as 

At` --+ 9At` := g-1 (At` + 0t,) g (9) 

Ft,v -+ aFt,~ := g-lFt,~,g , (10) 

which shows that  the Lagrangean (8) remains unchanged. 
The equations of motion (transforming covariantly under gauge transforma- 

tions) 
abc b p v  c Dt,F  t`v = 0 = Ot`F t`~'~' + .f At, F (11) 

show that ,  due to the self-coupling in the second term, the theory is not free 
even in the absence of matter. Indeed, in most what follows we will not bother 
with mat ter  fields. 

From the definition (6) of the field strength tensor one finally obtains the 
Bianchi identity: 

et`~P~'D~,F,(, = 0 . (12) 

1.2 C a n o n i c a l  Q u a n t i s a t i o n  

As in Maxwell theory, a straightforward quantisation of nonabelian gauge theo- 
ries is impossible due to the absence of a momentum conjugate to A~: 

Of-.y_____~M _ 0 (13) 
0A3 

There is a variety of ways to handle this problem. In QED, one introduces a 
"transversal" Dirac function in order to obtain canonical commutation relations 
which are consistent with GaulY law O. E = 0 [3], but this procedure obscures 
the physics in Yang-Mills theory since from Gau$' law the transversality of the 
gauge bosons does not follow (see Section 1.3). Technically even more involved 
is a constraint quantisation following Dirac [4]. 

If we do not want to use the path integral formalism, the simplest way of 
quantisation is to perform a classical gauge transformation yielding the Weyl 
gauge A0 = 0 before quantising [1]. One finds for the momentum conjugate to 
A(x) the chromoelectric field 

O~"YM a "a 
H ~ -  0Ai~ - F ~ , = - A i  = - E ~  , (14) 

and therefore postulates the canonical equal time commutation relations 

[A~ (x), / / ] (y)]  = iSij~ab~ (3) ( X  - -  y )  = [E~(y), A~ (x)] , (15) 

[A?(x), A}(y)] = 0 = [/-/~'(x),//~(y)] (16) 
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The Hamiltonian equations of motion obtained from the Hamilton operator 

1 [E~(x)Ea(x ) + g=a/d3x -~F~j(x)F~j 1 , "(x)]  (17) 

reproduce the generalised Amp~re's law as the spatial components of (11) 

i [g, A~(x)] = .4~(x) = E~(x) , Jig, E~(x)] = E~(x) = (DjFJi) a (x) (18) 

DuFUi(x) = 0 , 
but the time component of (11), the generalised GauB' law G(x) := D-E(x)  = 0, 
is absent, as it is an equation at fixed time. 

Note that  the resulting theory (without Gaufl' law) has its own right, but it 
is not clear whether it is renormalisable, and Lorentz invariance is surely lost. 
Rather than imposing it, one regains Gaufl' law by the following considerations: 

Going to the Weyl gauge before quantisation does not fix the gauge comple- 
tely. One can still perform residual, time independent gauge transformations, in 
particular infinitesimal ones, 

6k (x )  = D~(x)  + 0(/32) , (19) 

which are symmetries of H. Since 

i[/d3yff~(y)G'~(y),A,(x)] = 6A,(x) , (20) 

i [H, f d3x~a(x)G'~(x)] =0 , (21) 

Ganfl' law is the generator of the infinitesimal gauge transformations and com- 
mutes with the Hamilton operator. It also obeys the commutation relations of 
group generators, 

i [Ga(x), Gb(y)] _-- fabcGC(x)6(3)(x- y) , (22) 

which means that  there exist in general only as many independent constants of 
motion associated with the G a's as there are linearly independent matrices T ~ 
which can be diagonalised simultaneously, namely N - 1 in SU(N). 

One can think of the G~'s as generators of a symmetry of H we just disco- 
vered, without any reference to the Lagrangean (8) we started with. Imposing 
as a constraint on physical states 

G ~(x) [ pays) -- 0 , (23) 

one regains Ganfl' law and therefore the complete quantum theory of the La- 
grangean (8). Note tha t  since [H, Ga(x)] = 0, the sector of physical states is 
invariant under time development. 

All topological effects of the quantum theory can be uncovered by looking at 
the Gaufl' law operator in a theory which is carefully quantised in this way, as 
can be seen from experience [1]. 
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An analogy of the above situation is known from rotation invariant Hamilton 
operators in quantum mechanics. In the s-wave sector, the angular momentum 
operators J as generators of this symmetry  have to annihilate the states one 
allowes for: 

J I s-wave) = 0 . (24) 

Setting J -: 0 is inconsistent since its components do not commute with each 
other. In contradistinction to this example, the Ganl~' law operators have a 
continuous spectrum and hence in looking at their zero eigenvalues one obtains 
non-normalisable states. 

A note on the procedure: We first quantised the theory and then imposed 
the constraint on physical states. In general, reversing this order will yield a 
different result to order h, none of the two ways being a priori right or wrong. 

Furthermore it is not trivial tha t  choosing the Weyl gauge and quantising 
commute with each other. Again, one example for that  is the rotation invariant 
Hamilton operator in quantum mechanics [4]: Quantising first yields a centrifugal 
barrier proportional to j(j  + 1) / r  2, while first going to polar coordinates one 
misses the barrier. It is only reintroduced if one observes that  the momentum 
conjugate to r, -iO/Or is not hermitean, and the true canonical momentum is 
- i  (b-~ + ~)" If both procedures do not commute, the transformation eliminating 
A0 would induce a curvature, and the momentum -E~' would not be self-adjoint 
as is the case for the central force potential. Instead, one would have to hermitise 
it, / /~ = - E ~  + ]~(A),  so that  the components of the chromoelectric field do 
not commute with each other, thus revealing the curvature in the "Christoffel 
symbols" f~(A). 

In both cases, one prefers to take the procedure for which one regains the 
classical theory for h --4 0. The problem is that  one doesn't know whether - due 
to confinement - a classical limit to the quantum Yang-Mills theory exists at all. 
However, in QED the classical limit exists and - what is more - one  can show 
that  all quantisation methods yield the same result. One therefore can expect 
this to hold in Yang-Mills theory, too. At least the induction of a curvature 
by the Weyl gauge can be ruled out, since ghosts decouple in the path integral 
version when choosing an axial gauge. 

1.3 T h e  Schr /bdinger  R e p r e s e n t a t i o n  

In the Schrbdinger representation, 

- E ~ ( x )  = n ? ( x )  = - i  ~ A ~ ( x )  ' (25)  

one obtains as fixed time Schrbdinger equation for energy eigenstates 

/ [ ,  : ] dax - 2  5A~(x)6A~(x) + F ~ ( x ) F ~ ( x )  ~E[A] = E • [ A ]  , (26) 
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and GauB' law constraint (23) on physical states reads 

0i ~A? (x-----~ + /abcAb(x) gphys [.4.] = 0 . (27) 

In the abelian theory (fabc = 0) one considers g[A] to be a functional of the 
Fourier transform of A(x)  = AT(X) + OAL(x) decomposed into its transverse 
(0 .  AT(X) = 0) and longitudinal part 2. Gaufl' law reads after applying the chain 
rule 

kikiAL(k) = 0 , (28) 

and hence physical states can be an arbitrary functional of the transverse com- 
ponents of A only, independent of its longitudinal degrees of freedom. This 
can also be seen from the fact that  an abelian gauge transformation A,(x) -4 
Ai(x) + ai/3(x) leaves the transverse components untouched and changes only 
the longitudinal ones. Therefore the choice of the Coulomb gauge for free QED 
is unavoidable in the Hamiltonian formulation. In Yang-Mills theories, the Cou- 
lomb gauge is no natural choice since from Gaufl' law (27) one cannot conclude 
that the wave functional depends on AT only. 

Free QED can even be solved this way [1]: Looking at the Schr6dinger equa- 
tion 

f [ 1 d3 x + A~(x)hzjA,(x) 
2 5A~(x)6A~(x) 

gE[A] = EgE[A] , (29) 

hij := -02~O + O, Oj , (30) 

one constructs the gauge invariant ground state in analogy to the harmonic 
oscillator as 

l/ 
go[A] cx e x p - 2  daxd3y A,(x)wij(x,y)Aj(y) (31) 

oc exP-4 / d3xd3y F'J(x)---~F'J(y) , (32) 

f 1 _ 2 (5,j x, Y J ) ( 3 3 )  w, j (x ,y )  := h 0 d3k e - & ( x - Y )  [ k ~ 7r2lx-  yl4 - 2 ~ - ~  

with the infinite vacuum energy E0 = l t rw .  
Since g0[A] depends on transverse fields only, Gaufl' law is automatically sa- 

tisfied, and the vacuum state of the free theory is unique. One can now construct 
excited states like the one photon state 

PiPj ~ f d3x eiP.XAj(x) . gl[A] := AT(p)go[A] , AT(p) = j,j  ~-~ / (34) 

2 We neglect the zero mode of A. 
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The SchrSdinger representation offers an alternative way to derive Gaul]' law. 
As remarked above, states should be invariant against infinitesimal spatial gauge 

transformations: ~P [A + Dj3] " ~P[A], so that expanding around ~[A] yields 

d3x (Dit3) a ~-~P[A] = 0 , (35) 

and one recovers (27) after partial integration. 

1.4 Large Gauge Transformations and the R Angle  

Gaul]' law (23) as generator of infinitesimal gauge transformations annihilates 
physical states, and therefore physical states are invariant under infinitesimal 
gauge transformations and all gauge transformations that can be built up by 
iterating infinitesimal ones, called small gauge transformations. The question 
arises whether all gauge transformations are small or whether there exist large 
gauge transformations, i.e. if there are solutions to eqs.(26,27) which obey Gaul]' 
law but are not gauge invariant: 

~P [OA] ¢ ~P[A] (36) 

Let's turn to the question of boundary conditions for the fields. Assuming the 
absence of monopoles, all position dependent observables should vanish faster 
than ~ for [x I -+ co. This means that going to spatial infinity one finds a 
unique physical vacuum. Strictly speaking, the vector potentials have only to 
approach a pure gauge configuration at spatial infinity, but one can show that 
there exists always a regular gauge transformation after which 

l i m  I x l A ( x )  = o , (37)  
Ixt-+~ 

simultaneously reducing the set of possible gauge transformations to those that 
do not violate this condition: 

lim g(x) = const. (38) 
IXl-,oo 

These boundary conditions have been used to derive eqs.(20,21). 
The last requirement identifies all points at spatial infinity so that g is uni- 

quely defined there, and one compactifies the Euclidean space R ~ to the sphere 
S 3 when considering g. 

One may investigate whether the maps g(x) : S 3 -+ G can be decomposed 
into different classes. All maps in a given class can be deformed into each other 
and differ only by small gauge transformations. The classes are separated by 
topologically nontrivial, large gauge transformations. The set of all classes clearly 
forms a group, called the third homotopy group of G, Ha(G) [5]. If f/3(G) = 1, 
as is the case in QED, only small gauge transformations exist, and all of these can 
be continuously deformed to the map S 3 -+ 1. For any semisimple Lie group G, 
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particularly for SU(N), it has been shown that  H3(G) = Z, the additive group 
of integers, and hence large gauge transformations do exist. One can indeed 
show the existence of large gauge transformations without bothering with such 
topological considerations [6], [7], as we will explain now. 

There exists a functional of A which satisfies GauiF law but is not gauge 
invariant, known as the integral over the Chern-Simons three form: 

1 fd3xei3ktr [A,(F3~-~AjAk)]= (39) 
W [A] - 167r 2 

1 2_A~A k - 8r2 f daxe'Jktr [A~(OjAk + 3 ) ]  

Since 

' w  [A] _ + 1 [,(3) (40) 
6A~ (x) ~ f d3 y eijk 05 (x - 

and the surface term vanishes due to (38), W[A] fulfills GAntF law (27) because 
of the Bianchi identity (12): 

~W [A] 
D, , ,--777-7,, - 0  . (41) 

0 a t ( x )  

On the other hand, 

W[gA]-W[A]=n(g)- Q--~ [d3x  JkO, tr [(Ojg)g-lAk] (42) 
8~r J 

1 f a n(g) :-- ~ j d x eiJktr [(g-lOig)(g-lCgjg)(g-lOkg)] , 

where with the boundary conditions eqs. (37,38) the surface term vanishes again. 
n(9) is in general a nonzero integer and corresponds to the winding number of 
the map g : S a -+ G, as can be seen most easily for G =SU(2) -~ S a. As one can 
imagine, there are infinitely many ways to map spheres on spheres which are not 
continuously deformable into each other and can be labeled by the number of 
times one sphere is wrapped around the other. This winding number is additive: 

n(gxg2) = n(gl)  + n(g2) + a vanishing surface term . (43) 

As an example, one representative of each class can be obtained by consi- 
dering the following gauge transformations obeying the boundary conditions 
eqs.(37,38), where a i are the Pauli matrices which for SU(N) only have to be 
embedded into the higher groups: 

X 
9(x) = exp i t r -  IXl -7--Sf(lxl) : f (0)  = 0 , xl l im f( tx l )  - nrr . (44) 

Assuming physical states to be eigenstates of all unitary operators J?n[f~] im- 
plementing gauge transformations gn(x) = e i~(x) of winding number n, we see 
that  

an  = [9. A] = e , (45) 
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because JTo [3] describes a gauge transformation generated by (a succession of) 
infinitesimal ones, and hence kO[A] is invariant under it by virtue of Gaul" law 
(23). 0 is the Yang-Mills vacuum angle [6], [7], a new, hidden parameter in the 
quantum theory, which has been derived without any approximations here. Its 
effects will be examined in greater detail later. 

It is tantalising to observe that exp(±8r2W [A]) solves the non-abelian func- 
tional SchrSdinger equation (26) with zero eigenvalue (even in QED). Unfortu- 
nately, this solution is divergent for large A and hence not normalisable 3. On 
top of that, it lacks any physical meaning; yet one can use it to show that the 
gauge invariant state 

• [A] := C°w[A]~p[A] : JT,[314~[A] = ~[A] (46) 

is an eigenstate to the same energy eigenvalue as the original state and obeys a 
SchrSdinger equation which reads: 

• ~ . .  2 ] 

+ ~F~j(x)F~j(x)J ¢[A] = E~[A] . 

(47) 
By that, one moved the 0 angle from the state to a Hamilton operator which 
can be obtained from the Lagrangean 

f d3x Co : f d3x ~YM - -  ~167r 2 f d3x e~p ,  tr [FU~F p~] = (48) 

= /dax~.yM+Odw[A] , 

where in order to derive the last line one used that the Ghern-Simons term is 
related to the Chern-Pontryagin density [5] via 

1 1 v~ [Av(OpA~+ 167r2~patr [F~"FPa]= ~r20~ P tr L -  ~AoA~)] (49) 

and that the surface terms at spatial infinity do not contribute due to eqs.(37,38). 
Therefore one can make three observations: 

(i) The 0 angle can be removed from the gauge variant states ~[A] making them 
gauge invariant (46), but only on the expense of breaking the invariance of 
the Lagrangean under large gauge transformations, changing ~YM to /:a by 
adding a Lorentz invariant, but P and T violating term. 
The additional term in (48) is independent of the choice Ao = 0, and the- 
refore the occurence of the angle 0 does not depend on choosing the Weyl 
gauge before quantisation. It is a new, unremovable hidden parameter in the 
theory, and no principle is known which requires it to be zero. The unique 
classical Yang-Mills theory gives rise to a 0-family of quantum theories. 

3 Compare to all E ~ (n + ½)w - solutions of the quantum mechanical harmonic 
oscillator: They also diverge for large x. 
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(ii) There is no remnance of the Yang-Mills angle in the equations of motion, 
nor in the Hamilton operator  obtained from £e via the procedure described 
above, as long as one writes it in terms of the vector potential and chromo- 
electric field. Yet since under a large, t ime dependent gauge transformation 
f dax £0 changes by a total  t ime derivative Odn(g), gauge invariant quan- 
tum states acquire a phase in the temporal  developement between two states 
that  are connected by g,,, as is familiar from quantum mechanics. 

(iii) The  previous point is connected with the fact tha t  the momentum conjugate 
to A~(x) in £0 is no longer - E ~ ( x )  (14), but (cf. (47)) 

H~ (x) = - E~ (x) - ~ e ~jk F?  k (x) . (50) 

Therefore the components of the electric field do not commute with each 
other, and a connection is introduced in the physical Hilbert space thus 
revealing its nonzero curvature. 

1.5 QED in Two-Dimensional Spacetime 

There is an intriguing example of the occurence of a new hidden parameter 
[8], [9], [1], [10] in two dimensions. The Hamilton operator  and GauB' law of 
QED are in the SchrSdinger representation given by (cf. eqs.(26,27)): 

H = = d z  ' 

d ~ 
dx  A(x) = 0 .  (52) 

Therefore, k~[A] is a function of the zero mode of A only: 

~P[A]= f ( y d x A ( x ) )  (53) 

The wave functional solving both the SchrSdiner equation and Gauff  law is 

~P[A] = exp -lEo f dx A(x) , (54) 

where applying E(x) = i ~  (25) shows that  Eo, due to Gaufl' law the only 
observable, is the zero mode of the electric field. The energy density is finite and 

1 2 given by ~E 0. 
In analogy to the discussion above, compactifying the space R 1 to S 1 by 

requiring all field fluctuations to vanish at spatial infinity 4 amounts to the fol- 
lowing boundary condition on the gauge transformations allowed: 

e -iA(°~) = e -iz(-°¢) (55) 

4 Note that one may not demand physical observables to vanish at infinity since then 
E0 = 0 and the wave functional (54) is 1. 
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Again, e -iA(~) has a well defined value at spatial infinity. 
We again ask whether there exist large gauge transformations, i.e. transfor- 

mations which are not generated by GanB' law. The mappings g(x) : S 1 
U(1) ~ S 1 decompose obviously into different classes, labeled by the number of 
times one circle winds around the other. Hence, under a gauge transformation 
in QED 

A(x) ~ A(x) - ~xA(X) , (56) 

the zero mode 

f ax a(x).  f aA := A(oo)-A(-o¢)= E Z (57) 

changes by 27r times the winding number n (55). If n ~ 0, the unitary operator 
implementing the gauge transformation is not 

e x p i / d x ( d E ( x ) ) A ( x )  , bu t  £ 2 [ A ] = e x p - i / d x E ( x ) d A ( x )  , (58) 

because the surface term in which the two expressions differ cannot be dropped. 
The effect of such gauge transformations on O[A] can easily be calculated: 

~2~[A]~[A] = e-m°~[A] , 0 := 2~rEo . (59) 

So the 0 angle emerges as a constant electric background field which cannot be 
changed within the theory since [H, Eo] = 0, and whose different values therefore 
separate different worlds. 

The operator which is invariant under small gauge transformations, but chan- 
ges under large ones is the zero mode of the vector potential (57), cf. (39): 

1 f FI.[A]W[A]FI~[A] W[AA] WIA 1 + n (60) W[A]= ~ dx A(x) : = = . 

In order to construct the SchrSdinger equation for gauge invariant states, cf. 
(46), 

~[A] := e ~- f dx A(z)~[A] , (61) 

one has to move the 0 angle to the Hamiltonian and Lagrangean (cf. (48)): 

Eo = l E2(x) - ~ E ( x )  . (62) 

The momentum conjugate to A(x) is given by 

H(x) . -  0£o _ fl(x) + ~ (63) 
O A ( z )  2 .  " 

Since £ changes by a total time derivative under these operations, there is again 
no remnance of 0 in the equations of motion, yet physical states acquire a phase 
under time developement. 
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If one incorporates fermions into the theory, 

£ = £8 + ¢ (iTuV. - m ) ¢  , (64) 

one notes that in the Schwinger model (m = 0) £ changes under a chiral redefini- 

tion of the fermionic fields due to the axial anomaly (see Section 1.8) (75 = - 7  St) 
[11], [101, [11: 

~, --~ ea'~5¢ : • --+ £. + a--E(x) . (65) 
7r 

Since it can be eliminated by re-defining the fermionic fields 2a = 8, the Yang- 
Mills vacuum angle is physically irrelevant in that case. 

Yet as soon as rn ~ 0, this chiral redefinition is impossible and the 8 angle is 
physical [8], [9], giving the value of the background electric field, on which e.g. 
the number of stable particles and the spacing between successive isosingulet 
states crucially depend. 

If one would embed two dimensional QED into a larger theory, the back- 
ground field might be determined by the new theory, dynamically fixing 8; but 
no such mechanism has been found so far. 

1.6 A Phys ica l  P i c t u r e  of  0 Vacua and Ins t an tons  

Before deriving the axial anomaly in four dimensions and showing that the value 
of 8 is unobservable in QCD in the presence of massless fermions by the same 
mechanism as in twodimensional QED, we compare the situation in QCD with 
a well-known quantum mechanical example. 

A physical picture of the vacuum 8 angle [12], [13], [6], [7] emerges when one 
looks at a particle in a periodic potential (Figure 1): 

L = ½~2 _ v ( x )  , H : ½p~ + V ( x )  (66)  

v ( ~  + a)  = v ( x )  , p = ~ . (67)  

v(.) 

X--1 XO X l  

Fig. 1. Particle in a Periodic Potent ial  
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The discrete displacement as implemented by the translation operator 

~ , .  : ~ ? . x 9  t. = x + n a  , n ~ Z (68) 

is a symmetry of the system. I2,, should be compared to the operator ~n~3] 
implementing large gauge transformations in the physical Hilbert space of QCD. 
The infinite degeneracy of the classically stable "ground state" solutions at 
xn : V(x, ,)  = 0 corresponds to an infinite number of classical gauge field con- 
figurations A(x) = g~aOg,~ which are "pure gauge" and therefore have zero 
kinetic and potential energy but are topologically distinct from the trivial va- 
cuum A = 0 because of their nonzero winding numbers n. 

In the interpretation of Floquet's (Bloch's) Theorem via the tight binding 
approximation of solid state physics, this degeneracy is removed in Quantum 
Mechanics by a nonzero tunneling probability from one x,,-"vacuum" to another. 
If the wave function ~n(x) is an approximate solution of least energy to one well 
of the potential, localised around the n-th minimum x,,, the superposition 

(69) 

is an eigenfunction to ~n (cf. 45) 

s) , ,~e(z)  = e - ' e ~ e ( z )  , (70) 

and the ground state energy now depends on the Bloch momentum 0. 
How can one describe the tunneling process just sketched in classical mecha- 

nics? Of course, there exists no classical zero energy solution which interpolates 
between different classical minima. Yet going to imaginary time t -~ - i v ,  one 
interchanges the r61e of Hamiltonian and Lagrangean 

n -~ nr = -~ \ -~v]  + V(x)  

g - ~  g s =  ~ \ O r ]  

(71) 

(72) 

and thus obtains a classical solution in imaginary time 

o~ = + f i V ~  (73) 
Or 

that maintains zero energy throughout the interpolation between two different 
classical vacua xn , xm. Such a solution is called "instanton". The instanton 
action is given by 

Z m  

X ~  
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which is closely connected to the tunneling amplitude through the potential 
barrier in real t ime as given by the WKB approximation 

p WKB / -*m cc e x p -  dx ~ . (75) 

fign 

In Yang Mills theory, instantons are classical solutions of least energy interpola- 
ting between two classical vacua of different winding number, localised both in 
space and time, as explicit construction shows. They can be constructed [12] in 
the same way as above by going to imaginary time and solving 

g l  = 51 f d3x [E~(x)E~(x)_  ~F~i(x)F~j(x)]l a ~ (76) 

=~ F~ v = q-!~ ~ ' p~  (77) 2~lavpa~ 

So instantons are classical (anti)selfdual solutions to the Euclidean Yang Mills 
equations with zero energy. 

The tunneling amplitude between two vacua which can only be connected by 
a large gauge transformation of winding number n is (eqs.(74,75)) 

e x p -  / d ' r L , ( , ) = e x p -  / d4xl~,vp~trF~VF°~= exp - 8~r2 ' n ' g 2  , (78) 

where we reintroduced the coupling constant g as described in Section 1.1. Note 
the interplay between the instanton action, the Chern-Pontryagin density (49) 
and the winding number of the gauge transformation g,~. 

A word of caution is in order here: The analogy between the tunneling pro- 
cess in solid state physics and the connection of different classical QCD vacua by 
instantons should not be pushed too far. After all, the occurence of a physically 
measurable Bloch momentum is connected to ~n being a "physical" transfor- 
mation, namely implementing spatial displacement. The gauge transformation 
~2n[f~] is unobservable. The Bloch momentum can also be changed, while there is 
- as indicated - no way to change the vacuum 0 angle, which moreover becomes 
physically irrelevant in certain situations, e.g. the chiral limit, as has been hinted 
on in the previous section and we shall see now. 

1.7 T h e  Axial Anomaly 

In the two dimensional example we gave in Section 1.5 it was shown that  there 
exists a connection between the chiral symmetry of massless fermions and the 
0-angle. 

In this section we continue to discuss topological aspects of the standard 
model with a more detailed analysis of the chiral symmetry [1]. Therefore we 
consider the quark sector of a four-dimensional gauge theory. The Lagrangean 
density is 

Lqu~rk = ~i (~ + ~) ¢ , (79) 



Topological Effects on the Physics of the Standard Model 103 

where A~ describes a nonabelian background gauge field. 
On the classical level this Lagrangean has the global chiral symmetry 

¢ : (80) 

Since (75,%,} = 0 we get for the classical theory ~quark -~ ~quark under this 
transformation. 

The Noether current connected to the chiral symmetry is 

j~" = i¢~"~5¢ (81) 

which is classically conserved 
O , , j ~  = 0 . (82) 

This can easily be verified to be a consequence of the equation of motion 

i ( # + ~ ) ¢ = 0 .  (83) 

For a quantum theory the situation is different. Expressions like/~quark in (79) 
or j~ in (81) are not well defined. The product of two field operators at the same 
space-time point is singular and requires regularisation. This is most easily seen 
from the quantisation relation 

{ ¢ ( x ) , ¢ t  (y)}~0=u o = 5(a) ( x -  y) • (84) 

The regularisation may be carried out using point splitting. However it has to 
be done carefully since the introduction of a further parameter may spoil the 
symmetries of the theory. Nevertheless it is possible to regularise the theory in 
a way that the local gauge invariance is maintained. This is necessary since the 
gauge symmetry is a fundamental intrinsic property of the theory and it should 
not be spoiled. 

The requirement of keeping the gauge symmetry restricts the freedom how 
to regularise. Therefore one has to take into account that other, less important 
symmetries may be violated within the regularisation procedure. For such a 
symmetry the corresponding currents are not conserved. The symmetry is said 
to be broken by an anomaly. One example is the axial symmetry which is spoiled 
by quantisation according to the axial anomaly. 

Since j~ has no gauge group label it is a gauge singlet current. In this sense 
we call the axial anomaly also "abelian anomaly". 

We will proceed with a discussion of this anomaly. We take the expectation value 
of j~ with respect to the perturbative fermionic vacuum. 

(0FIj~ (x)10~) -- (j~ (x)) = (¢ (x)i7"~5¢ (x)) _= (¢ (x) r : ¢  (x)) (85) 

This can be done without loosing information since we expect the result for 
cg~,j~ to have no fermion operator component 5. The result may be regarded as 

5 This is confirmed by the path integral approach, which gives the same result as our 
calculations (see eg. [14], p. 100). 
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the amplitude for a quark to interact at the space-time point x with F~', to 
propagate in the gauge background field and to return to x 8. The background 
field coupling can be treated as two point interaction. So the propagation in the 
background field may be calculated perturbatively to get a power series in the 
backgroud field A ,  shown in figure 2. 

= (¢ (86) 

F ~ F ~ F ~ F ~ F~ 5 5 5 5 

o-o+o+O+O 
Fig. 2. Power series expansion for (j~" (x)) 

+ o o o  

When calculating O,(j~) we recognise that  the first term on the right hand side 
does not contribute since it is x-independent 7. The second term does not contri- 
bute since it is linear in A and we expect the background field to be invariant 
under charge conjugation. If the background field stems from the Feynman inte- 
gral of a physical theory this property is guaranteed s. With the same reasoning 
the third order term in A vanishes, as does every odd order in A. 

With  each interaction of the background field one gets an extra fermion 
propagator  SF = 1/(~ + i~) and the amplitude becomes more convergent. So, 
by power counting, terms of fourth and higher order are finite. Their  amplitudes 
can not contribute to O~(j~) since j~' is classically conserved order by order, and 
for finite amplitudes we can apply the classical result. 

Therefore the only diagram that  can give rise to a non-vanishing O~(j~) is 
the second order contribution in A~. We will focus on it in the following. Its 
contribution to (j~) is given by (the trace goes over color as well as spinor 
indices) 

(j~ (x)}A2 = i . /  d4zld4z 2 t r  [r;s  Z1) 

4t (zl) SF (zl -- z2)¢1 (z2) SF (z2 -- x)] (87) 

6 Or close to it, when we are applying point splitting to regularise the theory. 
7 To be precise each of the lower order contributions of (j~') is singular. Therefore it 

gets a more complicated z- and A.-dependence as a consequence of a gauge invariant 
regularisation prescription. For details see [16], [15]. 

s From experiments we know that, in contrary to the two dimensional theory (s. below), 
the charge conjugation symmetry is not dynamically broken. 
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_- f f d4pdaqei(P+q)=e ip~'''q~'v~'p'~ "ab (P'q) ' 

where T ~  ~ (p, q) is given by the triangle graph shown in figure 3 

~t 
F5 

r + p ~ / A ~ - q  

7PT'/ ~, N~x'faTb 

+ crossed graph 

Fig. 3. The triangle graph 

[ d4r 1 PT 1 ~ 1 
T~a: a : - i e  2 j (2~) 4 tr  "Y~75 ~ + I~ + ie7 a ~ - ' ~ 7  Tb~ _ ~ + ig 

+ ( p e + a  , pe+q)  

= l sabie2 [ d4r 1 p 1 ~ 1 

+ (pc-~a , p¢+q) =-- --25~bT ""~(p,q) • (as) 

The integral is linearly divergent which reflects the fact that  j~(x) was not 
properly regularised. This has the consequence that  a shift in the integration 
variable r ~ r + a changes the value of the (finite part  of the) integral by a 
surface term 9. This can easily be seen in a one dimensional analogon: Consider 
the integral 

/? z~ (a) = ( f  (~ + a) - / (~)) a~ (sg) 

where f is an analytic function. 
We expand f ( x  + a) in a Taylor series at the point x and perform the integral 

with the result 

a~ - f '  (90) A (a) = a ( f  (o0) -- f (--00)) + ~- ( f '  (00) (-oo))  + . . .  

9 The Feynman rules do not describe how to introduce the loop integration variable. 
Each of the choices r + a are a priory possible. 
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If the integral would be convergent or at most  logarithmically divergent then, of 
course, 0 = f (+¢~)  = f ' ( + o c )  . . . .  and the integral vanishes. 

However if the integral is linearly divergent we only have 0 = f ' ( + o o )  = 
f " ( + o o )  . . . .  and we get for A(a)  the surface contribution 

d (a) = a (f (oo) -- f (-00)) (91) 

which is in general non zero. 
The same applies to the four-dimensional integral T ups. The surface t e rm 

can be calculated quite easily. We star t  with the first par t  of T up~ and get 

1 +  
A 1 ( a )  : --ie 2 j (27r)4 t r  [7u75 exp aa  -- 1 ~ + ~ + i e  

1 1 

• : ii] ¢ 

S I 70 d4r 0 ( l + O ( r _ i ) ) t r [ T U % ¢ + t + i  e =- ie2ao`  (2~r) 4 Or<, 

1 1 
• 7 ~ U ]  • 

Now we Wick-rotate  to Euclidean space-time (t --~ ix4) and use "one quarter" 
of the four-dimensional Ganfl theorem 

where OM is the boundary  of M (which is the sphere S3(R) in our case) and 
f dao` is the a -component  of the surface integral. We get (R -+ co) 

f s  1 _i ~ 1 e2a'~ do "°' tr  ")'#'I")'5 ~--'~")'vT" )" 
-4 l ( a )  ---- (2~) 4 a(R) ¢-# 

_ e2ac~ 
S d/'2o` t r  ['~'%'~v'IP@'~"'~fl]R,,R6Rf~/R3 

( 2 . )  4 

Now we introduce polar coordinates and let the north pole point into the a -  
direction• Since f d f ? o ` R v / R  is zero if a ¢ u we get 

e2av L 7r e2av 
a 1 (a) -- - -  .e uu°°" dO sin 2 0 cos 0 .  cos 0 -- c uVpa 

71" 3 871-2 

The crossed te rm gives the same result so tha t  the total  surface t e rm is 

e2a" (93) 
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The vector Ward identities which enssure gauge invariance have the form 

ppT  "p~ (p, q) = 0 , qaT  "p~ (p, q) = 0 . (94) 

The chiral Ward identity which is connected to the chiral symmetry is 

(p + q)~ T ~p~ (p, q) = 0 . (95) 

Gauge invariance is one of the most fundamental principles of QCD and in fact 
there exists a choice of the integration variable r + a that  enssures (94) (namely 
a -- - 2 p  [16], p. 122), but for any other a the gauge symmetry is spoiled by the 
surface te rm (93). 

Unfortunately we need different a's to assure (94) and (95). So it is impossible 
to have both gauge symmetry and chiral symmetry. We choose (94) to hold and 
get a correction on the right hand side of (95) [17], [15]: 

e 2 
(p + q ) ,  T up~ (p, q) = - ~--~cP~"~puqv . (96) 

If this is plugged into (88) we get 

EPv Per 
(Ouj~) = 8r  2 (tr (O,A~ - O, Au)  (OpA~ - O~Ap)) . 

The right hand side equals 1 / 8 r  2 • (tr F * ~ F  u~) for the following reason: The 
third order term in A u vanishes since we have invariance under charge conju- 
gation. The fourth order term is proportional to e"vP~tr ([A u, A~][Ap, A~]) = 

1 - - D u p a A a A b A c A d  t £ - ~  . ~ u . ~ p n ~ j ~ b ~ j c d e  where f are the structure constants of the SU(3) 
group. One can now use the total  ant isymmetry of f and the Jacobi identity to 
show that  the last expression is zero. 

Thus we have motivated the final result 

1 
Ouj; = ~--~2tr F * , ~ F  u~ . (97) 

It can be shown that  there are no other contributions to the anomaly as for 
example virtual gluon effects 1° [15], [18]. The expression on the right hand side 
of (97) has a topological interpretation: It is just twice the four-dimensional 
Pontryagin density. 

Although the axial current is not conserved we can carry on by constructing 
a conserved current. Due to (49) we have 

tr F * ~ F ~  = 4 0 ~ P a  tr  ( 1 A ~ O p A ~  + 3 A ~ A p A a )  (98) 

and therefore 
O,J~  = 0 (99) 

to The fermion loop becomes more convergent with every internal gluon line and the 
intergrations over the gluon lines do not contribute to the anomaly. 
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with 
1 

2~. 2 

The conserved charge Q5 of J~' is 

Os = f dSr (J °-  1--~--e'~ 

f d3T ( :  + 2W (A)) 

(~A,OjAk + I A~AjAk) ) 

(100) 

0oi) 

where W(A) is the Chern Simons three-form which was already defined in (39). 
Qs consists of two pieces, a gauge invariant fermion contribution coming 

from j5 ~ and an anomalous term constructed from the gauge potentials. This 
term has the immediate consequence that  neither J~' nor Qs are invariant under 
topological non-trivial (large) gauge transformations JTn (under (small) gauge 
transformations that  are smoothly connected to unity they are still invariant). 
Q5 changes by two times the winding number. 

gl, Qsf2~ -1 = J?s - 2n (102) 

The commutator  algebra of the Hamilton operator  H, Q5 and g2,~ is 

[H, Q] = 0 , [H, f2,] = 0 , [J?,, Q5] = 2n~a  • (103) 

Since the 0-angle is defined by (45) 

 .10> = e-'°"10> (104) 

we conclude that  Qs acts as a shift operator  for 0: 

. 8  t 

e'TOs• (0) = ~b (0 + 0') . (105) 

. 8  # 

Since H and Q5 can be diagonalised simultaneously, applying e'~ -Q5 can not 
change the energy eigenvalue of an energy eigenstate ¢.  Therefore the energy 
spectrum does not depend on 0. The value of the 0-angle is physically irrelevant. 
If on the other hand fermions are massive, Equation (97) and all successive 
equations acquire a mass correction and we can not argue that  the 0-angle has 
no physical consequences. 

The same result may be obtained in a functional integral formulation. If one 
decides to have massless fermions and to translate the 0-dependence from the 
wavefunctions to the Lagrangean one gets the action (48) 

where 

Zo = / 2)¢T)¢l)A~ exp (i / dx£e (x)) , 

1 0 
LO = ~ t r  [F~F ~'~] 

167r 2 

(lO6) 

- ~ tr [ F * ~ F  ~ ]  + i ¢ ( ~ + 1 t ) ¢  . (107)  
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Redefining the fermionic integration variables according to the chiral transfor- 
mation law (80) £~ remains unaffected, but we get a contribution from the 
integration measure. This contribution corresponds to the anomaly, and we get 

Ze --+ Z8+2~ • (108) 

Since we just substituted our integration variables, Z0 does not change. Therefore 
Z0 = Z0+2~ has to be independent of 0. So we can conclude that  in the presence 
of massless fermions the 0-angle is no physical parameter.  

1.8 T h e  T w o - D i m e n s i o n a l  A n a l o g o n  ( S e h w i n g e r  M o d e l )  

Let us come back to the two dimensional example QEDI+I tha t  was already 
discussed in Sec. 1.5. 

In a two dimensional space-time, the Dirac spinors become two-component 
objects. The Dirac matrices may be chosen to be the Pauli matrices 

7o = a l  , ,71 = ia2  , 7s = - i a 3  (109) 

It is a particular property of two dimensions that  axial vectors are dual to vectors 

F~ = i7"75 = e ' . 7  ~ , e °1 = 1 = -Col (110) 

and therefore the axial vector current is dual to the vector current 

J2  = e~'~'J v • (111) 

Let us consider the fermionic sector of two dimensional QED. We start  to 
calculate the divergence of the chiral current in the same way as in the four- 
dimensional case.(j~ (x)/ can be expanded in a power series of the background 
A~, field shown in figure 2. In two dimensional QED we can not use charge con- 

r + p  
Y 

r 

Fig. 4. Graphica l  represen ta t ion  for T ~ (p) 

jugation to simplify the result since the symmetry under charge conjugation is 
dynamically broken. This can be concluded most easily from the existence of a 
constant electric field E0 (54), which is incompatible with the symmetry under 
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charge conjugation. However, the A~-order is already convergent enough not to 
produce an anomaly. Instead of the triangle graph we get the relevant contri- 
bution from T ~ (p) shown in figure 4. We are using the duality between axial 
vectors and vectors to obtain 

T Èv (p) = e~'pII p" (p) (112) 

where IIP" (p) is the vacuum polarisation tensor. Its space-time structure is de- 
termined by the requirement of gauge invariance 

ppII  p~' (p) = pv I I  pv (p) = 0 (113) 

to be of the form 

Therefore we have 

pap,, (114) /-P~ (p) (x g"" - 

wT"" (v) = 0 ,  (115) 

but the Ward identity related to the chiral symmetry, 

p~,T ~'v (p) (x p~,E ~'' , (116) 

does not vanish. 
So we regain the result that  gauge symmetry can be maintained, while the 

axial symmetry is broken on the quantum level. 
The result of a detailed calculation is [10], [19] 

. . . .  F* (117) 

where we have once more absorbed the electromagnetic charge e in the A.  field. 
The anomaly is now given by twice the two dimensional Pontryagin density. 

Therefore it is again possible to define a conserved current J~' and its time 
independent charge Q5 

g~' = j~' + I¢"~A~ , (118) 
7r 

Q s = / d x ( j ° ( x , + l A l ( x , )  

: J - d x j  ° (x) + 2 W  (A) . (119) 

In the Feynman path integral approach a chiral re-definition (80) of the fermio- 
nic integration variables amounts, due to the measure, to a new term in the 
Lagrangean 

f :DCOC:DA.e f L f :DCZ)g, )A ,e f( ) (120) 
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which coincides with (65). Thus QED with massless fermions in 1+1 dimensions 
(the Schwinger model) has no physically relevant 0-angle [19], [20]. 

Let us close this section with a remark that  is specific to a two dimensional 
theory. If we contract the gauge field equation 

O t t F  ~v  = e 2 j  v (121) 

with cvp and use the antisymmetry of F , ,  we get 

O ~ F *  = e 2 j ~  . (122) 

The divergence of this equation yields 

[:]F* 2 .~, e2 F* (123) 
= e Ou? 5 = - - - -  

71" 

Thus the gauge field acquires the topological mass m 2 = e2/r .  
Whereas in three-dimensional space-time there exists another topological me- 

chanism for vector meson mass generation (see below), no similarly elegant result 
has yet been established in four dimensions. 

1.9 C o n c l u s i o n s  o f  t h e  First  Part  

(i) For a long time it appeared that  QCD possesses too much symmetry. An 
additional chiral U(1) symmetry would predict that  there would be a particle 
degenerate with the pion, but no such particle exists [21]. Now we have 
recognised that  the chiral symmetry is broken by an anomaly and the U(1) 
problem has dissolved [13]. 
If the theory includes massless fermions the 0-angle is unphysical. 
But physical fermions are not massless and the 0-angle is supposed to remain 
observable. For 0 # 0 CP-invariance is violated, but in QCD the experiments 
require that  O = 0 and CP is not violated (measurements of the electric dipole 
moment of the neutron give O < 10 -9 [22]). 
No principle is known that  insures the vanishing of O. In fact the situa- 
tion is even more complicated: If we suppose that  the fermion masses arise 
from spontaneous symmetry breaking then we would expect that  the fer- 
mion mass matrix in the QCD Lagrangean would point in an arbitrary CP 
direction ~M1¢ + ~75M2¢. One can remove the M2-term by a chiral trans- 
formation. But this induces, due to the anomaly, a tr[F*~vF"V]-term giving 
rise to a 0-angle. This angle has to be canceled by the "initial" 0-angle in 
the Lagrangean in order not to yield CP-violating effects 11. 
This problem is not unlike that  of the cosmological constant which is a 
parameter that  in principle is present, but experiments force it to be zero. 

11 Or there exists a reason why even in the presence of massive fermions the 0-angle is 
unphysical and not CP-violating. 

(ii) 
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(iii) In the electroweak sector of the standard model couplings to 7u(1 - i75) are 
present due to the coupling of only left-handed fermions to the weak charged 
currents. The requirement of renormalisability forces the theory to avoid the 
anomalies in the gauge current (anomalies may not occour in subdiagrams 
where the axial current couples to internal lines). This is only possible if 
the quarks and leptons balance in number. In particular the existence of a 
top-quark is demanded. 

(iv) In the standard model the baryon number current acquires an anomaly [24]. 
The decay rate is controled by tr[F*,~FU"]. There are two mechanisms for 
baryon decay known: 
The first involves tunnelling. The tunnelling rate is given by the exponential 
of the instanton action (in a semiclassical description). But exp( -  instanton 
action)=exp(-87r2/g 2) is a negligible small number (~ 10-122year -1) [13]. 
The second mechanism is connected to 't Hooft-Polyakov monopoles [25]. 
The magnitude of this effect is still controversial (but it seems to suffice) 
and moreover an experimental evidence for monopoles is still missing. 

(v) The hypothesis of partial conservation of flavour SU(2) axial vector currents 
(PCAC) implies, in the absence of anomalies, that a massless neutral pion 
can not decay into two photons [23]. But the physical pion does decay with 
a width of about 7.9 eV. This large number can only be understood with 
the axial anomaly [17], [15], [18]. Moreover one gets the result that the 

. . . .  7 

J 5, Isospin- /1~ 

Fig. 5. Flavour neutral axial current 

width depends on the number of quark colors. The best agreement with the 
experiment is achieved for N = 3 colors. The remaining discrepancy of about 
10% can be understood as an effect due to the non-zero pion mass. 
Therefore the anomaly allows an experimental determination of the number 
of colors. 
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2 H i g h - T e m p e r a t u r e  Q u a n t u m  C h r o m o d y n a m i c s  

In Section 1 we were discussing more or less settled physics, i.e. work that has 
been done during the eighties. Now we would like to come to talk about some 
current research in QCD. In this section, we are going to show you the connec- 
tions between QCD at high temperature (QCD well in the deconfined, chirally 
symmetric region) and a three-dimensional topolgical field theory: the nonabe- 
lian Chern-Simons (CS) theory. More explicitly, we want to show you that the 
generating functional of the so-called hard thermal loops in QCD is the eikonal 
of the nonabelian CS theory. These connections have been established recently 
by several people [26], [27], [28]. They are relevant for the nonabelian generaliza- 
tion of the Kubo formula as well as for a gauge-invariant description of Landau 
damping in the quark-gluon plasma at high temperature. 

First of all, we would like to give you a short introduction to thermal field 
theory. For details, see, for example, [29], [30]. 

2.1 Temperature Green Functions 

The objects of study in a field theory at finite temperature are the temperature 
n-point correlation (or Green) functions 

a,~(xl,... ,x,~):= (¢(x l ) . . .  ¢(xn)) (124) 

where the xi are elements of Minkowski space, and the ¢(xi) are the generic 
fields of the theory in the Heisenberg picture. The angle brackets denote thermal 
average within the canonical ensemble 

tr (e-~H.. . )  (125) 
(...) .-- tr e_~H 

Here, H is the Hamiltonian of the theory, and f~-x represents the inverse tem- 
perature in natural units that we are going to use for the rest of the talk. 

Depending on the boundary conditions chosen to solve the equations of mo- 
tion, one defines various Green functions. For example, (T¢(x)¢(y)} gives the 
time-ordered two-point function, whereas O(x ° -y°)([¢(x), ¢(y)]) defines the re- 
tarded commutator two-point function. 

The set of all these n-point Green functions, e.g. in momentum space repre- 
sentation, 

Gn(pl,...  ,Pn):= f d4xl...d4x~ei(m~l+ "Pn~)Gn(xx, ' ' '  ,xn) (126) 

with real Pi and real xi, contains all the physical information about the system 
at finite temperature. But, as a matter of fact, perturbation theory within this 
description is rather difficult. A simpler perturbation theory can, however, be 
established on accomplishing the following unphysical continuation: one allows 
the time arguments x ° to be complex valued. For Bose fields, it can be shown that 
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- -  for ana ly t ic i ty  reasons of  the  n-point  funct ions - -  they  have to  be periodic in 
the imag inary  t ime direction 

¢(x  °, x) = ¢(x  ° - i~, x ) .  (127) 

Similarly, fermionic fields ¢ ( x  °, x) have to  obey ant iperiodic  b o u n d a r y  conditi-  
ons: 

¢ ( x  °, x) = - ¢ ( x  ° - i~, x ) .  (128) 

Note t h a t  these b o u n d a r y  condit ions are the essential differences between field 
theory  at zero and  field theory  at finite t empera ture ;  the  equat ions of moti-  
ons do no t  differ except  for a thermal  average, of course, in the lat ter  case. 
This extension to  complex values of x ° is cer tainly not  unique. In the so-called 

Im x ° 

Re x ° 

Fig.  6. Time contour in the I T F  

imaginary - t ime  f o rma l i sm  ( ITF)  one restr icts  x ° to the imaginary  axis in the 
complex x°-plane,  i.e. x ° 6 [0,-if~] (cf. Fig.2.1). 

--to 
J 

Im x ° 
t o  

D 

Re x ° 

Fig .  7. Time contour in the R T F  with a = 1/2 

This  can - -  for Bose fields - -  be in terpreted as a t rans i t ion  from the Min- 
kowski space- t ime manifold  ]R 3 × IR to the  new space- t ime manifold IR 3 × S 1 . 
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Besides the ITF  scheme, another popular choice for the complex t ime-path 
contour is shown in Fig. 2.1. This is just one of infinitely many possibilities (the 
choice depends on the parameter  a) of setting up the real time formalism (RTF) 
using the t ime-path contour method. Choosing a = 1/2 provides equivalence 
with yet another formulation of field theory at finite temperature,  called thermo 
field dynamics [31], [32]. In actual calculations, one always considers the limit 
to --+ oo. The advantage of the RTF over the ITF is that  perturbat ion theory 
can be defined with Green functions depending solely on real t ime arguments. 
Thus one does not have the problem of a backward continuation from purely 
imaginary times to purely real, hence physical, t ime arguments. 

In turn, perturbat ion theory is a bit more cumbersome as, for example, the 
RTF two-point function is a 2 x 2 matrix. 

2 . 2  I m a g i n a r y - T i m e  F o r m a l i s m  

In the imaginary-time formalism, perturbat ion theory corresponds to the well- 
kwown Dyson-Feynman series with the integration over P0 replaced by an infinite 
s u m  

- ~  --+ iT ~ . (129) 

n E Z  

The usual time-ordering along the real x°-axis is converted into an imaginary- 
time-ordering down the imaginary x°-axis. That  is, later times are positioned 
below earlier times (cf. Fig. 2.1). Furthermore, all the Green functions are unique, 
because the inverse d 'Alembertian [5 -1 is unique on ]R 3 x S 1. 

(Anti-)periodicity in position space on the interval [0 , - i~]  provides for dis- 
crete imaginary energies Po = 2rrinT (for bosons) and P0 = 21riT(n + ½) for 
fermions, n E 7/, in momentum space. These discrete energies are (proportional 
to) the so-called Matsubara frequencies. 

At this point, it is interesting to take a look at the high-temperature limit. In 
position space, the t ime interval [0, - i~ ]  shrinks down to a point when T -+ oo, 
since then 13 = l I T  --~ O. Hence we lose the time dimension and end up with a 
three-dimenional field theory: 

] R  3 x S 1 T - - ~  ] R  3 " (130) 

In momentum space, the same result can be deduced by looking at some generic 
perturbat ion theoretic diagram. Let the boson propagator have the form 

i where p0 = 2zrinT (131) D (p) = p2 _ p 2 _ m 2 ' 

while a fermion propagator be 

S(p) = , where Po = 2 r (n  + ½)iT. (132) 
70P0 - "~ • P - m 
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So our diagram might be something like 

iT  ~ e _ 4 r 2 n 2 T 2 -  P 2 _ m 2 e . . .  , (133) 

where e denotes the coupling constant. In the limit T --+ c~, all modes with 
n ~ 0 decouple - -  they behave like very heavy particles. Only the zero mode 
survives, and so we are left with 

d3p e,cf ~ 1 evf~.  (134) 
~ - ~  p 2 + m 2  "" . 

This is exactly what one would find in a field theory on a Eulidean space of one 
dimension less. Moreover, fermion contributions are obviously subdominant since 
the energy modes in the fermion propagator  never vanish. Taking the infinite 

tempera ture  limit in this way means, in the end, setting external Po = 2~niT  ,,=o 
0. A more detailed t reatment  must, however, allow for a high-temperature limit 
with fixed, nonvanishing external P0 in order to be able to continue back to real 
energies. But,  even in the case Po is kept finite one has a problem. Namely, does 
one t ry  to continue backward 

2 r n T  -~ - ipo  , (135) 

one immediately notices that  this continuation is not unique. I.e., from a single 
Euclidean Green function one can obtain several Minkowski Green functions. 
Which one to take depends on the physical setting. 

As a rule, the ITF represents the natural  scheme for calculating static quan- 
tities like the effective potential. 

2.3 Hard Thermal  Loops 

By transferring the QCD Feynman rules for T -- 0 to finite temperature  in 
a naive way one gets a confusing infra-red limit: on mass-shell both the sign 
and the magnitude of the gluon damping rate appear to be gauge dependent. 
Braaten and Pisarski [33] have argued that  whenever a quantity is calculated 
perturbatively in a hot nonabelian gauge theory, sooner or later an infinite subset 
of diagrams nominally of higher order in the loop expansion contribute to the 
same order in the coupling constant g. These higher-loop diagrams have to be 
isolated and resummed into an effective expansion which includes all effects to 
leading order in g. This resummation technique is necessary to get, even at one 
loop, gauge invariant results. 

More explicitly, hard thermal  loops are the ones with exceptional (soft) ex- 
ternal momenta 

bothpo and IPl of order gT (136) 

and large (hard) internal momenta  

ko and /or  Ikl of order T .  (137) 
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p - k  

• g ~ g  " 
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Fig. 8. The one-loop self energy contribution H2(p) 

p - k  

q 

Fig. 9. The two-loop self energy contribution /'/4(P) 

The need for resummation can be seen from a simple example. Look at the one- 
and two-loop contributions to the gluonic self energy depicted in Figs. 8 and 9. 
Let us write them as 

H2 (p) - . f  d4kn2 (k, p) (138) 

/ / 4 (P )  -- /d4k//4(k,p). (139) 

One can then easily derive for the following quotient (D(k)  symbolizes the free 
gluon propagator)  

/ / 4  (k,  p) _ ' / /2  (k)D(k)'. (140)  
//2(k,p) 

For small k , / / 2 (k )  is known to behave like g2T2. Hence 

//4 (k, p) small k g2T2 (141) 
H2(k,p)  - k 2 

Hence, for soft internal momentum k ..~ gT, the two contributions are of the 
same order in g. Stated in a slightly different way, the fourth order diagram 
contains second order contributions. 
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2.4 T h e  K u b o  F o r m u l a  

A recent application of hard thermal loops is the generalization of Kubo's formula 
of linear response theory to nonabelian gauge theories. In this subsection, we 
shall follow mainly reference [34]. 

Before tackling the nonabelian case, let me first remind you of Kubo's formula 
within quantum electrodynamics. 

The behavior of electromagnetic fields in a plasma of charged particles is 
described by the polarization tensor IP'v(x,  y) which is the two-point current 
correlation function 

I I~ ' ( x , y )  - e-ik(~-Y)II~'V(k) = - i ( j~ ' (x ) j" (y) ) .  (142) 
j (zrc) 

Perturbatively, this is a one-charged-particle-loop diagram with two external 
photon lines. 

The real part of this tensor describes phenomena such as Debyescreening and 
propagation of plasma waves; the imaginary part describes the damping of fields 
in the plasma (Landau damping). If one integrates out the charged fields in a 
functional integral for the theory, the polarization tensor naturally emerges as 
the thermal average of the time-ordered product of two currents. However, there 
are situations where the response of the plasma to the electromagnetic field is 
described as the average of the retarded commutator of currents. To see this 
in the case of QED with fermion current J~'(x) = e¢(x)7~'¢(x) and interaction 
Lagrangean  ~int : -J~'A~,, one calculates J"  in an expansion in small gauge 
fields A~. The equation of motion for this theory is 

O~,F~'~'(x) = Jl ' (x) .  (143) 

J*'(x) is related to the scattering operator S[A] = T exp[-i f d4x A~,(x)j ~'(z)] 
(here j~ (x) - e¢i (x)7~¢i (x) and the subscript I denotes the interaction picture) 
in the following way: 

5S[A] (144) 
J~'(x) = iS  - 1 5 A , ( x )  " 

The rhs of (144) is ready for an epansion in A. The result up to linear order is 

J~'(x) = fl '(x) - i / d 4 y O ( x  ° - y°)[j~'(x),j"(x)]A~,(y) + O(A2).  (145) 

Using this in (143) and taking the thermal average with the unperturbed density 
matrix e -H°/T,  one arrives at the Kubo formula 

O~,F"~'(x) = / d4y I I~ ' (x ,  y)A,,(y) (146) 

where//~v (x, y) = - iO(x ° - yO)([ju (x), j~ (x)]). Hence, the average of the retar- 
ded commutator is the appropriate function for the situation where we perturb 
the plasma by the field and ask how the field evolves. 
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Now, we discuss the relationship between the time-ordered and the retarded 
response functions, H~ ~ and H~ V. The real part is the same for both of them 

Re/ /~  ~ = R e n ~  ~ . (147) 

This has long been familiar, see e.g. [35]. Here we shall concentrate on their ima- 
ginary parts. A large-T calculation to one-loop order yields for their imaginary 
parts 

k°T2 P~" (148) 
I m H ~  - 12 

as well as 

where 

Im H~ ~ = I m / / ~  + ~..~3 p~,,, (149) 

p . v =  _k20(_k  2) 61r [l_p~., 1 ~,v\ ~,3 1 +~P~  ) ,  (150) 

k"k ~ 
P ~  = gUV k 2 , (151) 

kik j 
P2 ° = P°2~" = O, P~J = 5 i / _  k --Y- (152) 

This relationship b e t w e e n / / ~  and H~ ~ can be understood in the following way. 
//~v, being retarded, obeys a spectral representation of the form [36] 

f dk' p (k°' k) (153) 
= H~b + J O k~ _ ko _ ie 

for some spectral function pUV(k). //s~u~b is a 'subtraction term' that can arise in 
the real part of H~ v. For H~ v, we then have [36] 

f , I I~ '  = II~ub + dk° k~ - ko - ie + 27rif(k°)P~'(k°' k),  (154) 

where 
1 (155) 

I ( k o )  - e k o / T  _ 1 " 

The bosonic distribution function f(ko) appears because H~ v is ultimatively 
part of the bosonic (i.e. photon) propagator, and Mso because it is given by the 
thermal average of the T-product of two bosonic operators, viz. the two currents 
j~ and j~. The essence of our results (148) and (149) is that the high-temperature 
spectral function is 

k°T2 P ~  (156) 
p~'(k) = 127r 

and the difference in the high-temperature behavior between Im H~t V and Im//~v 
(O(T 2) vs. O(T3)) is attributed to the presence in the latter of 27r/(ko)p ~V, 

1 3 /~v which according to (155) and (156) tends to gT P . 
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Our result for the retarded function H~ ~ agrees with various previous calcu- 
lations [35]. It is noteworthy, that these early calculations in the Soviet literature, 
based on the Boltzmann and Vlasov transport equations of kinetic theory, are 
here regained in quantum field theory at one-loop order. 

Another correlation function that is frequently considered is the imaginary- 
time one. It too is given by a dispersive integral 

.v f F(kLk) H~m. t : /'/s~uh -b dkt° k~o - w, ' w,~ 2tinT. (157) 

Because the external energy wn is temperature dependent in imaginary time, it 
makes sense to speak of high-temperature behavior only for the n = 0 mode, 
effectively reducing dimensionality to three, where the spectral function enforces 
an O(T 2) large-T behavior. 

In QED, the one-loop calculations at finite temperature are useful since 
higher-order contributions are down by the coupling e. This is related to the 
following consideration of the effective ac t ion  Fhigh_T[A ] that produces the Kubo 
formula as the corresponding equation of motion 

if if Fhigh.T[A ] ---- --~ ~xF~(x )F~v (x ) -  ~ d4xd4yA"(x)ll~( x'y)Av(y)" 

(158) 
The important fact is that the expression above is gauge invariant. The pola- 
rization tensor of QCD (= SU(N) gauge theory with NF flavors of fermions in 
the fundamental representation) at finite temperature is related to the one of 
QED simply by factors 

1 ~v 
= (N +  NF) .b n ED" (159) 

But, in the nonabelian case, (158) is no longer gauge invariant. The reason is, as 
one might already expect from the foregoing discussion of hard thermal loops, 
that higher-order contributions in the coupling must be taken into account. 
Hence, the task is to find the correct effective action /'high-T[A] Of QCD giving 
us the generalized Kubo formula. 

2.5 Analysis  of  H a r d  T h e r m a l  Loops in QCD 

One way of analyzing hard thermal loop contributions is the calculation of 
the corresponding Feynman diagrams (e.g. [37]). Another one is to use a high- 
temperature action and to require gauge invariance for it. The gauge invariance 
condition relates the high-T QCD to a three-dimensional Yang-Mills theory with 
topological mass term, a theory worked out about ten years ago [38]. The high- 
temperature action is deduced in different publications (e.g. [33], [37]): 

1 1 f d4 ~ ( N  ~NF) T2 Fhish.T[A] = -~ ] x t r f  F,~ + + iS- F[A]. (160) 
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In the following, light-like vectors are used 

1 (1, +#) ~ Q=~ := ~ , = 1 (161) 

A+ := Q~:A,, = (Ao 4-~iAi) (162) 

and an angular integration f d~ O over the directions of the unit vector ft. The 
temperature-independent term F[A] has the form: 

r[A]=2~ f d~AT)A3+ f dO~W(A+). (163) 

Gauge invariance for the action requires gauge invariance for F[A]: 

,F[A]=,  [2r f d4zAgA~] +6 [f dDoW(A+)]=O (164) 

JW(A) abc  b ¢ ~ W  - -  ---+(O+ +O_)A~+ +~,+ ~ + f A+7-w~-O (165) 
¢,~t+ 

8+ ~A6-~+ [W(A+) + ~ 

abe b ~ 1 f ,4 --.'Aa'] (-)O_A~_=O. (166) +f A+sA--~+ [W(A+)+ 2Ja-x. ' t+ +J 

Calling the term in the square bracket S, the gauge invariance condition gets 
the form 

01 ~-~-~1 S - 02A~ + ,,~bc4b..x ~--5--- ~6A~ ~ = 0. (167) 

S is an integrated functional of the fields, so we set by analogy with Hamilton- 
Jacobi theory 

8 =  -a-fS, (168) 

what gives for gauge invariance condition 

a ¢abcAb A c OtA~ - 02A 1 + j .ll.~ 2 = 0. (169) 

With this constraint for the A-fields we can relate the high-temperature QCD 
to a topic of topological field theory the Chern Simons theory. In the eighties 
[38] the CS-Lagrangean 

/2(A) - 1 ( 2 ) 87r2eOktr OiAjAk + AiAjAt, (170) 

was used as topological mass term for three-dimensional Yang-Mills theories 

1 v £ = ~tr F ~' F~,v + 87r2my2(A) (171) 
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with equations of motion 

r n e " ' ~ F  ~ (172) :D,F  "v + ~- ap = 0 

where m is a gauge invariant mass which, in nonabelian theories, is quantized 
so that  

e ~s~2'n = 1 ~ rn = n/4~r. (173) 

So we have a topological massive gauge theory with multi-valued action. But 
with the quantization condition the phase exponential of the action remains 
gauge invariant. 

In order to see that  this theory resembles much of the hard thermal loop 
analysis in QCD, we must relate F[A] to the CS functional D[A]. This can be 
done by the constraint (169), which arises also in CS theory. 

2.6 Pure  C h e r n - S i m o n s  Theory  

£CS = 87r2k~{ A] (174) 

because £ is a volume form, the corresponding action (here integration in 2+1 
dimensions) is independent of a metric. So we axe dealing with a topological field 
theory, a framework which is used in mathematics to investigate the topology 
of low-dimensional manifolds [39]. 

The equations of motion are 

ea~'F~,, = O. (175) 

For doing canonical quantization we choose the condition Ao = 0, then we have 

(176) 

Now we can choose phase space variables by a method for first order Lagran- 
geans of the form £ = wiJq~pj, so we have A~ = q~, A~ = pa. By Legendre 
transformation we get a vanishing Hamiltonian 

H = 0, (177) 

which causes trivial equations of motion 

A, = 0 (17s) 

The 0-component equation of motion does not involve a t ime derivative. It is 
merely the Gant~' law constraint 

e'JF, j = 0 (179) 

giving the generator for gauge transformations 

k i t -~  Ca(x) F j(x). (180) 
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We now implement the constraint as a relation for the quantum states, what 
means quant iza t ion  before  solving of  cons t ra in t s  [40]. 

The antisymmetric matrix in the Lagrangean determines the symplectic 
structure of our theory and establishes the phase space commutation relations 

[A~(x), A~(y)] = k e i j 6 a b ~ ( x -  y). (181) 

Since H -- 0 all the dynamics is in the constraint 

Ga(x)l~) = 0, (182) 

where ]!P) are the physical states and 

i [G~(x), ab(y)] = f"b~a~(x)(f(x - y) (183) 

the algebra of the constraints, which follows the Lie algebra of the gauge trans- 
fomation group. 

For the realization of the quantum theory we have to get an irreducible 
representation of an algebra of observables, which consists of functions on the 
phase space. The irreducibility is obtained by choosing a polarization, what 
means stating what is p and what is q and what is the argument of the wave 
functions (there is not a single unique polarization, but quantization should be 
independent of which one is taken). Here we choose Cartesian polarization 

1 
A~ =_ ¢'~ , A'~ - ik  6¢ a (184) 

l~) ~ ~(¢) (185) 

the phase space variables are represented as 

A~(x)l~ ) ++ ¢"(x)g'(¢) (186) 

1 
A~(x)lkv) ~ ik  6¢"(x) @(¢)" (187) 

The constraint implies an equation for the physical states @(¢) 

G ° ( . ) I ~ )  = 0 , = ~  

( 6 6 ikO2¢a(x)) ~(¢) = O. (188) 01 ~ + l°bcCb(x) ~¢c(x) 

For finding a solution of this equation we use the WKB-method. Our Lagrangean 
has the form 

k 
£cs = ~OfI~A~ - Hcs 

k :~A ~ kA~ =~A,  2 - ~  2A, (189) 

° "° (190) kA2A1 =- P~t. 
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The WKB-eikonal of ordinary quantum mechanics is defined as 

¢(q) = e i f "  dq'p(q') (191) 

Analogously, we state for the CS-WKB-eikonal 

~(¢) = e i f*" ~)AlkA~(A1). (192) 

To get A~(A1), we use the zero curvature condition for the A-fields 

~abc aba~ = 02A~. (193) 01A~ + j "-1~'2 

Now we take a solution for the Gaufl' law constraint (188) of the form 

~(¢) = e ~W(*). (194) 

In the polarization chosen above we get 

( 6 6 ikO2¢a(x)) ~(¢) = 0 (195) 01 

b =~ 0 1 ~  + f ¢ (x) 6~bC(x ) = k02¢~(x). (196) 

Comparing this with (193) gives 

6W(¢) = kAy(x) . (197) 

By identifying S from (167) with W and 4) with A1 and comparing the constraints 
(169) of the hard thermal loop analysis and of the CS-theory (193) we make the 
conclusion that the hard thermal loop generating function is given by the WKB- 
eikonal of CS-theory [41]. 

What still remains to do, is to construct the phase W that means solving the 
'quantum' constraint. Questions of representation theory of symmetries on quan- 
tum states arise here. These are nontrivial and represent a source of anomalies. 
For the solution of the constraint we use a two-step strategy 

a X a (i) determine eifx ~ ( )a (x)~(¢) 

(ii) demand e~fx~'(x)G°(x)o(¢) = ~(¢) ~ Gaut$' law. 

Whereas the Gaul]' law represents the infinitesimal action of the Lie algebra on 
the states, (i) and (ii) is the action of the Lie group (A a are the gauge parameters). 
For the exponent we get 

We define 

=i L (alJ  + -k fx:a   °. (198) 

G = G~ + 2k i x  tr ¢02X, (199) 
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where G¢ should only transform the argument 

e ~ ° ~ ( ¢ )  = ~(¢g) (200) 

with g = e x an element of the gauge group and 

¢9 - g- leg + g-lOlg" (201) 

Under gauge transformation the wave functional picks up a phase 

eiGe-iG~ = e-2~ia,(¢;9). (202) 

for e l  one gets [40] 

a l  (¢; g) = -- 2---~ tr (2¢02gg -1 + g-lOlgg-lO2g) + 4zrk ~O(g). (203) 

The w arising in a l  is a total derivative and has the form 

1 a~- (g-lOagg-lO~gg-lO~g) (204) O~'w~, := w(g):= 2--~2 ~ "tr  

the w-term in a l  represents the winding number of the gauge transformation g, so 
fx  w°(g) is multi-valued, but this is innocuous when CS-quantization condition 

4rk = integer (205) 

is fulfilled. 

C o n c l u s i o n  

From the quantum mechanical transformation law 

eiVke(¢) = e-2~i~l(¢;9)~V(¢9) 

= ~P(¢) ~ Gaul]' law 
k~(¢g) = e2~rial(¢;g)k~(¢) 

= I (¢)12 

(206) 
(207) 
(208) 

follows that  a i  fulfills the cocycle condition 

a l (¢ ;  g) = a1(¢; g~) - al(Cg; g) (209) 

and so is a 1-cocycle [42]. Such objects arise in quantum mechanics, if a symmetry 
transformation is represented not only by shifting the argument of the wave 
functions, but also giving them a phase (e.g. quantum mechanical representation 
of Galileo boosts). The response of the action to this implementation of gauge 
symmetry is a change by a total derivative 

d 
L(A 9) - L(A) = ~-~2ral, (210) 

what indicates a residual symmetry of the theory. 
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S o l u t i o n  

This is the explicit construction of states obeying (207). To this end, we write 

~(¢) = e2~ia°(~)¢(¢) (211) 

and seek a quantity a0(¢) called a 0-cochain that  satisfies 

ao(¢ 9) - ao(¢) = a l  (¢; g). (212) 

Then (211) solves (207) with gauge invariant ¢(¢) 

¢(¢9) = ¢(¢). (213) 

If (212) holds then the 1-cocycle a t  is trivial - -  it is a coboundary. It is possible 
[40], to construct such an ao which trivializes a l  

Ix  k Ix  tr(¢h-lO2h)' (214) ao(¢) = 47rk w°(h) - 

where h is defined by 
¢ = h-lOlh. (215) 

The wave functional is single-valued provided 4rk  = integer. 
The Hilbert space is one-dimensional when no gauge invariant functionals of 

¢ can be constructed (e.g. physical plane). For that  the explicit physical states 
are given by 

~(¢) = We 2~°(¢)  (216) 

with A ~ ( ¢ )  = h-lO~h~(¢) . (217). 
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1 I n t r o d u c t i o n  

A quantum field theory is said to have an anomaly if a symmetry of the classical 
system is lost by quantization. A well known example is the axial anomaly in 
QED, where both the vector current and the axial vector current are conserved 
in the classical theory with massless fermions. After quantization, one of these 
symmetries is lost, which is generally attributed to the necessity of regularizing 
ultraviolet infinities. However, the concept of anomalies is more general and 
fundamental, as will be shown in the second part of this lecture. 

Semiclassical methods are ideally suited for studying anomalies, as all known 
anomalies already occur on one loop level, i.e. to order h, and in most cases higher 
order corrections do not modify the result. An example for this is again the axial 
anomaly in QED, where the leading graph to the neutral pion decay is anoma- 
lous. From this one loop graph the anomalous contribution to the axial current 
can be derived. Another advantage of the semiclassical approach to quantum 
field theories is that it is nonperturbative, as it is an expansion in the number of 
loops and not in powers of the coupling constant. Since non trivial classical so- 
lutions of field theories such as solitons and instantons are known, semiclassical 
expansion around these solutions can be used in order to gain nonperturba- 
rive results for quantum field theories. Important examples are 't Hoofts baryon 
decay via instantons and the formation of 0 vacua by tunneling between classical 
vacua in Yang Mills theories. Another application of semiclassical methods is to 
check whether spontaneous symmetry breakdown, which is in general derived on 
a classical level, is stable under quantum corrections. 

In the first section of this report, semiclassical methods will be reviewed. 
The starting point is standard time dependent WKB, where all the concepts can 
be developed without the technical complications of quantum field theories. It 
will be shown that the semiclassical term (WKB wave function in QM and the 

* Lectures presented at the workshop "TOPICS in Field Theory" organised by the 
Graduiertenkolleg Erlangen-Regensburg, held on October 10th-12th, 1993 in Kloster 
Banz, Germany 
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l-loop contribution in field theory) is rather peculiar in the sense that it is the 
first quantum correction, but nevertheless can be expressed in terms of classical 
objects. In the following two sections the semiclassical treatment of anomalies 
and their physical consequences are discussed. 

2 The Semi-Classical Approach 

2 .1  I n t r o d u c t i o n  

Besides variational calculations and perturbation theory, the semiclassical ap- 
proach is a standard approximation scheme in quantum mechanics. Semiclassi- 
cal methods have been succesfully applied to numerous problems like e.g. high 
energy scattering (Glauber theory), tunneling problems (a-decay) and WKB cal- 
culations of bound state wave functions. For quantum field theories, semiclassical 
expansion is particularly useful, as it is a nonperturbative method. 

The formulation of semiclassical approximations for quantum field theories 
and time dependent WKB in quantum mechanics is very similar. Therefore the 
next two sections review time dependent WKB to show the basic concepts. The 
results are then generalized to field theory and some applications are given. 

2.2 The  W K B  Approx ima t ion  

Starting from the SchrSdinger equation 

h 2 
ih t¢ = - mmV2¢ + v(x)¢ 

and using the polar form of the wave function 

i 
¢ = p0/2) exp ~S 

one can show [1] that p and S obey the following (real) equations: 

OS 1 h 2 V2p  (1/2) 
0---[ + ~ ( V S ) 2  + V(x)  - 2m p(1/2) 

and 

(1) 

(2) 

(3) 

1 
h ( ~ .  + Vj) = 0, where j = --" p(V). (4) 

a s  m 

Equation (3) is the classical Hamilton Jacobi equation with a quantum correction 
term of the order h 2. Equation (4) is the continuity equation and is independent 
of h. 

In semiclassical approximation (i.e. to order h) the two equations decouple. 
S is obtained by solving the classical Hamilton Jacobi equation. The continuity 
equation can be solved for p once S is known. From the fact that quantum 
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corrections in (3) are of the order h 2, one sees that  also the h term in the 
semiclassical wavefunction is essentially classical. One finds 

02S 
p = det( OxiOa------~j ) (5) 

if one imposes the boundary condition that  the particle is located at position 
a at time t = 0. This equation is particularly easy to prove in one dimension. 
If one differentiates (3) once with respect to the initial point a and once with 
respect to x one finds 

02S 10~ ( 02S OS 
°'(0--~-~) + ozoa  - ~  ) = o 

which is just the continuity equation with p o¢ OaOzS. The normalization is fixed 
by the requirement that  

¢(z,a,t)lt=o = 5(x - a) (6) 

A proof of (5) for more than one dimension is given in appendix A. 
The WKB wavefunction is exact, if the action S is a quadratic functional. 

Three examples for this are: 

- the free particle of mass m in d dimensions: 

= (  m ~ ~dt2) i m 
¢lr~e(x'a ' t )  \2--~-~ht/ exp [h  2-t (x - a)2 ] (7) 

- a particle of mass rn bound in a harmonic oscillator potential of frequency 
0J: 

ch°(x, a, t) = ~2rih~ln(wt) J exp 2 sin(oJt-------~ ((x2 + a2) cos(wt) -- 2xa 
(8) 

- a particle in three dimensions in a constant magnetic field B = Bea 

CB(x 'a ' t )  = ( \2--~ht/ 2r ihs inhat  exp ~ - - ~ [ ~ ( c o s h a t  (x - a)i 

+(x x a)3 s inhat)  + (x - a)]]] (9) 

eB 
= - -  (10) 

2cm 

The classical meaning of (5) can be understood if one remembers that  the deri- 
vative of the classical action with respect to the initial point of the trajectory 

0s  
Pi := - Oai (11) 
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is the initial momentum of the particle [2]. Therefore the inverse determinant 

p-1 = det(~x/pj)- i  = det(~piXj ) 

converts any small distribution in initial momentum A3p(0) into a final distri- 
bution in position A3x according to 

~ax(t) = p-~ (t)ZVp(0). (12) 

In other words: p-1 measures the spread of the endpoints of a trajectory, if the 
initial momentum is varied. 

2.3 Funct ional  Integrals  

The form of the WKB wavefunction can also be derived from a functional in- 
tegral approach. Starting from the path integral for the quantum mechanical 
wavefunction 

i s i (131 ¢(x, a, t) = N -1 d(y)  exp(~S) 

f 0  t 7}'t . . Z = d T ( - ~ ( y , y )  -- Y ( y ( T ) ) )  (14) 

one expands the integration paths around the classical solution Yc 

y(r) = yc(r) + 

keeping only second order terms in ~/. The wavefunction is 

i _ I f  .m - ¢ (= ,a , t )  = e x p ( - ~ S c ) g  d[rT] exp(z-~S(rT)) (15) 

where S is a quadratic functional 

i 
t 

S(~h t) = dT((ih il) - (~, U(T)~) (16) 

02 
- -  v ( y )  (17) 

1 
U,3 - m Oy~Oyj 

N is a potential independent normalization factor. 
Note that only periodic orbits which start and end at x -- 0 contribute to 

(15). The integral term measures the quantum mechanical fluctuations around 
the classical path. For quadratic actions, the expansion in rl terminates and ¢ is 
the exact wave function. It will shown in the following, that 

N -1 f d[rT] exp iS[y] = pl /2  (18) 
J 
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which means that  the WKB approximation and stationary path approximation 
in the path integral are equivalent. This result implies that  the quantum fluc- 
tuations in (15) can be expressed through purely classical objects. The factor p 
in the WKB wavefunction is connected with the quantum fluctuations around 
the classical path. Nevertheless it is a purely classical object, as we saw in the 
last section. From equation (18) one gets: 

pl/2 f dO? ) e x p ( - i ~  f dr(~, (c9~ + U(T))~) ) 
pl/2 - f dO? ) e x p ( - i ~  f dT(•, 02~)) 0 

det(02 + U(T)) -1/2 
det(02)-l/2 

( H e r ) - 1 / 2  

( H   o)-1/2 

where the generalization of the finite dimensional formula 

amx exp(- (x ,  Ax)) (det 7rn/2 A)-I/2 

(19) 

(20) 

(21) 

has been used. The spectrum of the operator a 2 + U(t) is discrete if one imposes 
the boundary conditions 77(0) = 77(t) = 0 on a finite interval [0, t]. We now have 
to prove that  

det(02 + U(T))-I 02S 02S° (22) 
det (0t~)_ 1 = det ( -  0--~a) / det ( -  0--~a). 

One method to show this is the following: Consider the related differential equa- 
tion 

[0~ + U(t)]ijfj(t,  z) = zfi(t ,  z) (23) 

with the boundary conditions 

/i(O,z) = 0 Ot]i(t,z)[t= o = c, (24) 

where z is any complex number and ci any real nonzero vector. Obviously the 
fi are entire functions of z. Furthermore the fi are eigenvectors of 0t 2 + U(t) 
whenever z is such that  f i ( t , z )  = 0. These eigenvectors satisfy the boundary 
condition fi(0, z) = f i ( t , z )  = 0 of (21). Since the converse is also true, the 
determinant of the linearly independent solutions of (23) must be of the form 

det f(k)(t, z) = g(t, z) I I (er  - z) 
r 

where g(t, z) is an entire function without zeros. This is also true for U = 0 
therefore 

~(k) 
_ _  _ ] - [  _ (25)  G(t, z) . -  go(t, z) det er z 
g(t, z) det ff~) ~ "  e ° z 
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is an entire function. If the potential U is smooth on the interval [0, t], (23) 
and its solutions become independent of U at large N .  If the same bondary 
conditions (24) are used for free and interacting solution, these functions must 
approach each other at Izl --+ oo and the determinant factor must tend to unity. 
Similarly, if one assumes that  the spectrum e~ is such that  one can interchange 
the limits of forming the 1-I and Izl --+ oo, also the 1-I term tends to untity. Under 
these cirumstances, one sees that  G(z)  ~ 1 as Izl --+ oo and hence by Liouville's 
theorem G(z)  = 1 for all z. Setting z = 0 one finds that  the ratio of determinants 
(21) is related to the zero mode eigenvectors of 02 + U(t): 

detf~ k) l-Ie~ 
det f(~) ~ ~o 

(26) 

To complete the proof of (22), one has to relate this eigenvectors to the classical 
solutions of the problem. Consider two solutions of the classical equation of 
motion 

mO2x~(t) _ OV(xC) 

x ~ and x c + ~x ~ which differ by a variation gx ~. Then 

(t) a2v( c) 
oz ax  

Since the two paths satisfy the classical equation of motion, they can only differ 
in their initial conditions: 

0x~(t) Ox~(t) ~ c  
 xT(t) - ax;(0) xj(0) + , " 

As we are looking for a solution with the boundary condition fi(O) = O, one has 
to set 5xi(O) = 0, thus the solutions with the required boundary conditions are 

f(i k)(t) = OxC(t) c(. k) - Ox~(t) c(.k) (27) 
op (o) , ' 

which, together with (26), proves (22). Obviously the semiclassical contribution 
to the WKB wave function can be written in terms of classical quantities. 

From the wave function with the boundary condition (6) the quantum me- 
chanical part i t ion function Z(~) can be calculated: 

Z(•) := Tre -~H (28) 

f dx(x]e-13nJx) (29) 

= ] dx¢ (x ,  x, - i Z )  • (30) 
3 
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If e.g. the WKB result for the harmonic oscillator is inserted in this formula, one 
finds 

mw ~ (d/2) ?7~w 
ZH°(/~)=(2~hs~nh(w/3)] /dxexp(-2hsinh(w/3j(c°sh(w/3)-l)2x2 ) " 

(31) 
The term in front of the integral is the O(h) contribution, the integral is the 
classical action. If the integral in (31) is evaluated one finds that 

) d/2 
ggo(/3) = \ 27rhsinh(wt) ] -~w / 

i.e., the result is h independent and classical and semiclassical contributions 
cancel. This again demonstrates the classical nature of the O(h) term. 

2.4 Field Theory 

The generalization of the discussion of the previous section to field theory is 
straightforward. The interesting object here is the generating functional 

i (s(¢(x),Ox¢(x)) + / dxj(x)¢(x)) (33) Z(j) := g -1 / die(x)] exp ~ 

For illustration an action of the form 

s(¢, 0¢) = / d~x[(0.¢) ~ + Y(¢(x))] (34) 

is used, ¢ represents many fields. As for quantum mechanics, the generating 
functional is expanded around the classical solution of 

[]Co(x) + v ' ( ~ c ( x ) )  = j ( x )  

with appropriate boundary conditions. The crucial role of the boundary condi- 
tions will be illustrated in the applications. One introduces new fields 

¢(~) = ¢~(x) + ~1 /~ , (~ )  

and keeps only second order terms in the exponential to derive the WKB form 
of the generating functional 

ekS¢(J)N -1 f d[~(x)] exp(i f ' ' ~2S ZwKs (J) = -- ] dxdx T/(x ) e ¢ ( ~ ( x ,  ) T/(x) (35) 

e~Sc(J)lV-1 (det ~2 S ~-1/2 (36) 
= ~ ¢ ( ~ ( ~ , ) /  • 
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For an action of the form (34), this can be rewritten: 

f i f + (37) ZWKB(j) = ekSc(J)N-X d[r/(x)] exp(~ 

= e So(j ) ( d e t ( - c  + 

If the normalization N is properly defined. Note that  ¢c is a functional of the 
source j ,  therefore the determinant term of the generating functional is also j de- 
pendent. Note also the similarity of this expression with the quantum mechanical 
form eqs.(2), (15) and (19). 

In order to calculate the fraction in ZwKB, a regularization procedure has 
to be given for the determinants. The determinant of an arbitrary operator D 
can be written as 

det D = exp In det D = exp Tr In D. 

The problem is that  In D is not trace class in general, which makes the above 
formula meaningless. A solution of this problem is to define the C-function of the 
operator D 

~(D, s) := TrD -8 

which exists for large enough values of s (for the operators we are interested in). 
If In D is trace class, one finds that  

TrInD = - j-S(D,s) I • 
s=O 

For all other operators the above equation can be used to define the lefthand 
side by analytic continuation of the ff function from values of s where it exists to 
s = 0. Using the ff function definition of the determinants, equation (38) reads 

i S lnZwKB(j)= -~ c ( j ) +  ~ / [¢ ' ( - -D+  V"(¢c)) ~ ' ( - t :3+ V"(O))],=o (39) 

From (36) the effective action in one loop approximation can be derived. The 
connected generating functional W(j) is defined as 

Z(j) = e iW(j) 

and is related to the generating functional of the proper vertices. The effective 
action is defined as the Legendre transform of W(j) i.e. 

f 0w Sell(C) = W ( j ) -  d4xCj ,where ¢ =  Oj 

It follows from (36) that  the effective action to order h, i.e. to one loop order, is 

ih 52S (40) 
Sel f (¢  ) = S(¢) + -~- lndet  5¢(x)5¢(x')" 
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A pedagogical discussion of this can be found in [3], [4], [5]. Equation (40) is the 
central result of this section. From Sel!  the proper vertices to one loop order can 
be calculated, if the determinant  is regularized properly. The anomalies, which 
will be discussed in the next section, emerge from the O(h) term in the effective 
action. 

2.5 Expansions About  Non-trivial  Configurations 

Solitons: For systems with degenerate classical vacua there are topologically 
nontrivial classical solutions which can be interpreted in terms of a tunneling 
amplitude. A simple quantum mechanics example is described by the Langrange 
function 

1 L = ~(¢(t)  ~- - (c 2 - ¢ ( t ) 2 ) 2 ) .  

Classically there are two states of lowest energy ¢(t) = c and ¢(t) = - c .  Classical 
solutions with a finite action have to approach one of these solutions as t --~ +c~. 
The choice ¢ ( - ~ )  = - c  and ¢(c¢) = c is called an instanton solution. It has a 
nonzero but  finite classical action. This can be seen by rewriting the Langrangean 

1 ¢2 c~)~ L = ~(¢  - + + ¢(¢2 _ c 2) (41) 

1 d . 1  3 
= ~ (¢  - ¢~ + d )  2 + ~ ( ~ ¢  - C2~) (42) 

as the sum of a square, which vanishes for the classical solution, as can be seen 
from the equation of motion, and a total  derivative, which gives a nonvanishing 
classical action for the soliton solution 

/_~ d - 1 3  43 
sc = ~ ( ~ ¢  - c2¢) = - ~ c  =: Q. 

Note tha t  the explicit form of the classical solution has not been used so far. 
The  WKB generating functional for j = 0 is then 

ZWKB = exp -~QN- d[rl] expi  dtrl(t)(-O~ + 2c ~ - 6¢c(t))rl(t). 

In Euclidean spacetime the soliton can be interpreted as a tunneling amplitude 
between states with ¢ = +c. 

I n s t a n t o n s :  
ries. The Yang-Mills-Fermion Lagrangian is 

EyM = l ( E 2  - B 2) + ¢ ( / ~  + m)¢  

= ~ ( E -  B)  2 + E B  + ¢ ( /~  + m ) ¢ .  

An analogous situation is found in 4-dimensional Yang-Mills theo- 

(43) 

(44) 
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The second term is the derivative of a current S" 

EB = O,S" (45) 

Thus, as in (44), the pure Yang-Mills Lagrangian is the sum of a divergence 
(which is topological and does not contribute to to the equations of motion) 
and a quadratic term. It follows that  one class of classical solutions is when the 
quadratic term is zero or Ec = Be. The important point is that  this class of 
solutions is non-trivial because non-abelian groups can be mapped non-trivially 
onto the sphere at infinity and hence the integral 

v : =  f a zO.S" 

does not necessarily vanish, indeed can be an arbitrary integer, and it is clear 
that  for v # 0 the solution is necessarily non-trivial. From the point of view of 
the fermions the WKB expansion about such a non-trivial solution is 

i z / d[¢¢] exp ~ ZWKB = exp -~vN- i / d4x~(i ~ + m -t-$c)¢ (46) 

The additional term 41c in the fermion action couples the fermions to the in- 
stanton. It is responsible for t 'Hoofts baryon decay via electroweak instantons 
[6], 

For future reference it may be worth noting that  if we define the charge 

we have 

Q(t) = f d3 So ( 4 7 )  

v = Q ( o o )  - Q ( - c o )  . ( 4 8 )  

Thus, as in the 1-dimensional case, the instanton solutions can be interpreted as 
an indication that  in the quantum theory there is tunnelling. Here the tunnelling 
takes place between different vacua In > characterized by QIn >= nln >. Fur- 
thermore if we define global gauge transformations as those that  are generated 
by group elements G that  map non-trivially onto the sphere at infinity, we have 

GQG -1 = Q + v .  (49) 

This shows that  Q and hence the In >-vacua are not gauge-invariant with respect 
to the global gauge-transformations, and that  to obtain truly gauge-invariant 
vacua one must choose combinations of the form 

[0 >---- Z e r o ° I n  > " (50) 
n 

The 0-vacua obtained in this way are the physical vacua. 
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Spontaneous  S y m m e t r y  Breakdown Another application of (36) with j = 0 
can be given for systems with spontaneous symmetry breakdown. If V(¢) has a 
minimum ¢0 # 0, the classical ground state is ¢(x) = ¢0 = const. If one expands 
the field configurations around these solutions one finds 

and 

so = v(¢0) f d4x = v(¢0)n 

• i Z = e kt;'v(¢°) N - '  f d[r/] exp ~ ( f  d4xr/( -I-1 + V"(¢o))r /+ 0(r/3)). (51) 

V" is the true mass matrix. It can have vanishing eigenvalues which corre- 
spond to massless Goldstone modes. Higher derivatives of V can be interpreted 
as couplings between the fields ~7. If all higher derivatives are kept in (51), Z 
is the exact generating functional of the problem. It describes a system of in- 
teracting fields '7. The Feynman diagrams of this theory can be calculated by 
introducing a new source term f dx~?j, which couples to the new field. 

Effective Po ten t ia l s  As a last application the Coleman-Weinberg formula is 
derived with the help of the ~ function regularization. This time we take j = 
const and ¢c = const. The classical equation of motion becomes 

V'(¢c) = j (52) 

and the classical action is 

With the help of (39) one finds 

• h 

° 

The ~ function term for a constant ¢c ;an be evaluated explicitely [3]: 

¢ ( - 0  + r " ,  s) := T r ( - O  + Y") -8 (55) 

= a ~ k ( k ~  + Y " ) "  (56 )  

(y,,)~-. 
= 7r ~ (57 )  

( s  - 1 ) ( s  - 2)  " 

Differentiating this with respect to s and setting s = 0 yields: 

det ( -O + V " ) =  ~r2((1V")2 In V " -  3(V")2) • 
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The effective potential becomes (up to an infinite, but field independent con- 
st ant ): 

V e f f ( ¢ c )  = V(¢c)'4- ~--~(1(V"(¢c))2 In V" (¢c ) -  ~(V")2). 

This is the Coleman-Weinberg potential. Its relevance in the framework of spon- 
taneous symmetry breaking is discussed in [6] (Chap. 6.4). 

3 Anomal i e s  [8] 

An anomaly is said to occur in a quantum theory when a formal symmetry of 
the corresponding classical theory is not realized in the quantized version. Often 
one thinks of anomalies in terms of specific examples such as the axial anomaly 
in QED. This anomaly is usually attributed to the fact that regularizing the 
ultraviolet infinities in a gauge-invariant manner introduces a modified definition 
of the axial current which is gauge invariant but no longer commutes with the 
Hamiltonian (this will be elaborated upon in greater detail below). In other 
words, the conservation of the axial current, valid on the classical level, is broken 
in the quantum theory. This and other examples of anomalies may lead one to 
think that they are specific to field theories and somehow connected with the 
infinities that arise in such theories. 

A closer look reveals, however, that anomalies have a much more fundamental 
nature; they can occur quite generally as a consequence of the quantization 
procedure itself, i.e. the representation of the Poisson bracket algebra in terms 
of self-adjoint operators on a Hilbert space. Particularly the need to specify the 
latter may in general introduce the breaking of a symmetry, as will be shown in 
the next section. 

All known examples of anomalies already occur in the semiclassical appro- 
ximation, i.e. at the one-loop level, and most anomalies are not modified by 
higher-loop effects (cf. in the case of the axial anomaly the Adler-Bardeen theo- 
rem, [9]). They are therefore essentially semiclassical phenomena and thus ideally 
suited for treatment by the semiclassical methods described in the previous sec- 
tions. Typically, anomalous contributions will be contained in analogues of (40) 
which gives the effective action induced by quantum fluctuations, and can be 
evaluated e.g. by C-function methods, as will be elaborated upon further below. 

3.1 Quantum Mechanical Examples  

The simplest, trivial, example of breakdown of a symmetry because of quanti- 
zation is the free particle, i.e. the Hamiltonian 

p2 
H = - -  . (58) 

2 

Classically, this Hamiltonian is invariant under translations in the coordinate 
x. Quantization occurs formally by substituting p2 _~ _h202, and specifying 



140 L. O'Raifeartaigh 

the Hilbert space on which this operator is to act. If one chooses L2(-c¢ ,  cx)), 
translational symmetry is preserved, i.e. 

ei~Pxe -i'~p = x + ha  for all a . (59) 

If one, however, chooses the Hilbert space to be the space of functions with a 
finite period, e.g. L2(-cr, ~r), then the full translational symmetry is lost. Only 
a lattice symmetry remains, i.e. the parameter cr above is constrained to be an 
integer multiple of 27r/h. 

A not quite so trivial example is the supersymmetric harmonic oscillator: 

( o p x) (60) 
Q = p + i ~ x  

H = Q2 (p2 + (hw)2x2 + 5w 0 ) (61) 
---- 0 p2 + ( ~ ) 2 Z 2  _ ~ . )  • 

Formally, there is a parity symmetry: 

Q ( x ) = ( ~ l o ) Q ( - x ) ( ° l l o )  . (62) 

However, Q is selfadjoined and thus H > 0. Furthermore there is a unique ground 
state with zero energy and it takes the form 

( o )  (°3) 
~ o  = e _ ~ z 2 / 2  • 

This breaks parity symmetry, since it is not invariant under 

(01 / ¢0 ~ 0 ¢0 • (64) 

All excited states can be shown to occur in parity doublets. In the limit h --+ 0 
the asymmetry vanishes. This demonstrates its quantum mechanical nature. 

A very similar behaviour is exhibited by the Dirac operator 

( 0 - D t + a . D )  ~ t  = _~) (65) 
40= -Dt  - a . D " 0 

(here, the chiral representation for the 7-matrices was used), which can serve to 
define the Hamiltonian 

H=_~)2 ( - D 2 - a . ( B + E )  0 ) .  (66) 
= 0 - D  2 - a .  ( B -  E) 

Classically, and formally, one has time reversal symmetry: 

D(t, Ao)=7oD(- t , -Ao)7o  z with 7 o =  (01n)  . (67) 
\ ~ , , /  
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However, since 40 t = -~) we have H > 0. Furthermore the ground states take 
the form 

¢0 = ¢0 

and therefore break the symmetry. This is in fact the origin of the axial anomaly, 
since the multiplicity of ground states, i.e. of zero modes of 40, is given by the 
Atiyah-Singer index 

N¢o (x ] * F~'" F~,,, (69) 

which is precisely the additional anomalous term entering the axial charge of 
QED 1. Thus it becomes clear that also the axial anomaly is a general consequence 
of the structure of the Dirac operator in conjunction with the requirement of 
anti-hermiticity of~ ,  or equivalently the positivity of the Hamiltonian. It occurs 
independently of second quantization, which ultimately leads to the construction 
of the Dirac sea, the need to regularize ultraviolet divergences, etc., i.e. the path 
by which the anomaly is usually derived. 

3.2 A n o m a l i e s  in Q u a n t u m  Field T h e o r y  

Despite this fundamental origin of anomalies, in physical applications they oc- 
cur indeed most prominently in the framework of quantum field theory. There, 
one may in particular ask how they arise systematically in the path integral 
formalism, where the fundamental object is the generating functional 

z [ J ]  . (70) 

Since the action in the exponent is classical, it respects all symmetries present at 
the classical level. Quantization is introduced in this framework by the sum over 
histories. Therefore, the breaking of symmetries can only occur in the integration 
measure [dr], as was first realized by Fujikawa [10]. Usually, one would choose 
[d¢] to respect the symmetries of the classical action S; however, under certain 
circumstances, this may not be possible, in particular when there is more than 
one symmetry. Examples of this are massless QED, which contains Poincar~, 
gauge, and chiral symmetry, and also general relativistic theories which contain 
general coordinate and Weyl invariance. These examples will be treated in detail 
below. Anomalies occur when there is no measure which respects all the classical 
symmetries. In this case one must decide which of the competing symmetries is 
to be regarded as more fundamental and determine the measure such that it 
respects those. If any of the remaining symmetries axe broken by the measure 
there is an anomaly. 

1 Note that analogous considerations enter e.g. Levinson's theorem, in which one 
counts the number of bound states to obtain the difference in scattering phase shifts 
at zero energy and infinite energy, respectively; also, in the Aharonov-Bohm effect, 
the winding number of an electron path around the solenoid enters the phase acqui- 
red by the electron wave function in the detection plane. 
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Poincard vs. Chira l  S y m m e t r y  The action 

S = / ¢(~ + ie.~)¢ (71) 

is Poincard invariant and chirally invariant. If one, however, wanted to introduce 
a mass term, it would break one of these symmetries: The combination m e t e  is 
only chirally invariant, whereas rn¢¢ is only Poincar~ invariant. Since Poincard 
invariance is regarded as the more fundamental symmetry, one usually introduces 
the former. In precisely the same spirit one chooses [d¢][d¢] as the path integral 
measure, and not [d¢t][d¢] and thus violates chiral invariance. 

Genera l  Re la t iv i ty  The presence of a gravitational field can, according to 
General Relativity, be expressed as a curvature in the space-time [3]. Thus the 
actions of the scalar, the gauge, and the Dirac field in four dimensions, and the 
string action in two dimensions are generalized, respectively, to 

1 (g~cO,~¢Of~¢+R¢ 2) (72) 

1 - a SF = f d4x ~ ¢ h a ~ 7  n , ¢  (74) 

where the transformation matrix between flat and curved coordinates (the local 
vierbein) 

h~(x) = 0(~ (76) 
C~X~ ' 

the corresponding metric tensor 

gU~ (x) = ~?~'bh~ (x)h~ (x) , (77) 

and its determinant g = det gU~ have been introduced, and ~b  is the metric 
tensor of Special Relativity (i.e. flat space-time). These actions are constructed 
so as to be general coordinate invariant, i.e. invariant under an arbitrary repara- 
metrization of space-time. They however all have an additional invariance, the 
Weyl invariance, given by the combined transformations 

g"V(x) -~ e2"(~)g.v(z) 

and, respectively, 

¢(x) -+ e"(~)¢(z) 
A~(z) ~ A.(z) 

~b(X) --+ e3a(::)/2~(x) 

X d ( z )  ~ X d ( z )  . 

(78) 

(79) 

(80) 
(81) 
(82) 
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Since general coordinate invariance is regarded as the more fundamental sym- 
metry, the path integral measure is fixed (uniquely) to respect this symmetry; 
this leads to the choice 

-- I 
x 

for any tensor field T= of rank s in n space-time dimensions. The case of the 
scalar field (s = 0) will be treated explicitely below. The measure (83) in general 
breaks Weyl invariance, leading to the Weyl anomaly (also called the conformal 
anomaly). The Weyl anomaly is an example of an anomaly which is not already 
completely given by one-loop effects (however, in all known cases, anomalies 
already show up at the one-loop level). 

To see why the factor gl/4-=/2, is needed in (83) let us consider for example 
the case of a scalar field, with a path integral measure of the form 

H d(gk (x)¢(x)) . (84) 

Under an arbitrary infinitesimal reparametrization of space-time, x' = x + e, the 
measure changes as 

2k 

IId(gk(=)¢(=)) = H o= d(gk(x')¢(x')) 
fg ~ t  

= H ( 1  + 2k(O.e~'))d(gk(x')¢(x')) 

(85) 

(86) 

where the factor 2 in the exponent stems from the fact that  g"~ is a second-rank 
tensor (cf. (77)). On the other hand, 

d(gk(x')¢(x')) = (1 + e~'O.)d(g k (x)¢(=)) (87) 

so that ,  to first order in e, the Jacobian of the transformation is 

J = det(1 + 2k(O~,e ~') + e~'O~,) (88) 

= exp(Tr(2k(0.e") + e"0.))  . (89) 

The trace can be evaluated as 

Tr(2k(0~e") + e"0~) = 

The first term, being a total divergence, vanishes. However, for the second one 
to vanish (and thus for general coordinate invariance to be preserved), one must 
choose k = 1/4. 



144 L. O'Raifeartaigh 

3.3 Quan t i t a t i ve  C o m p u t a t i o n s  

Having established the source of the anomalous contributions in the path in- 
tegral representation of the generating functional, the task of computing them 
in practice remains nevertheless formidable. In general, there are two ways to 
proceed, the systematics of which one can illustrate in the example of the integral 

I = f d z e  = (92) 

Assume one is interested in the behaviour of I under a rescaling a --+ Aa. One 
can either evaluate the integral, observe I (x 1/a, and conclude I ~ I/A. On the 
other hand, one can rescale x such that the exponent is invariant, i.e. x ~ x/)~, 
which leads to dx -+ dx/A, and thus to the same conclusion without having to 
evaluate the integral. In the context of the path integral, the first method would 
typically correspond to an evaluation via C-function regularization, 

N f[d¢]e -*Do = (det D) p = e -p~'(°'O) (93) 

where ~(s, D) = Tr(D-S), p depends on the type of fields considered and N is a 
field independent normalization constant. Then one can investigate the response 
of the calculated object under the relevant transformations, i.e. obtain ~ ' (0 ,  D) 
as the limit lims-~0 ~(' (s, D). 

The second method, on the other hand, corresponds to the approach taken 
by Fujikawa: Transform the field ¢ as 

¢(x) --+ ¢'(x) = e"(x)¢(x) (94) 

where e(x) is an element of the Lie algebra generating the symmetry transforma- 
tions. The action remains invariant; however, the measure acquires a Jacobian 

(95) 

The Jacobian needs to be regularized; this is done by the Fujikawa prescription: 

WrD£(X) = lim Tr(e(x)e -D/M2) (96) 
M--~ov  

where D is precisely the operator appearing in the path integral. This is an ad 
hoc prescription. Its arbitrariness can be reduced somewhat by checking whether 
the same result is obtained using 

TrDe(X) = lim Tr(e(x)f(D/M2)) (97) 
M---~ oo 

with any f (x)  such that 

f ( o )  = 1 = = . . . . .  o .  ( 9 8 )  
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This can be verified for most of the interesting theories. Note that (96) is nothing 
but a e(x)-weighted partition function in the limit of infinite temperature M2: 

lim Tr(e(x)e -DIM2) = lim Tr(e(x)e -Dr) 
M - - + o o  t---~O 

(99) 

= lim ~-~ [ dx ¢~(x)e(x)e-Dtcn(x) (100) 

= ~ i r ~  f dx¢:(x)e(x)GD(x,y, it)¢,~(y) (101) 

= }im / dx e(x)Go (x, x, it). (102) 

Thus the task of computing the l-- loop contribution to a quantum field theo- 
retical anomaly can be reduced to the task of computing a quantum mechanical 
partition function. 

3.4 The  Axial  (U(1)) A n o m a l y  

This section is devoted to an evaluation of the axial anomaly of QED. This 
is the application initially considered by Fujikawa; here, his calculation will be 
discussed, and it will also become clear that the C-function method [8] precisely 
reproduces the Fujikawa prescription. 

The fermionic part of the QED path integral is 

=/[d¢][d¢] exp(¢/~9¢) . Z 

One now considers local chiral rotations, 

or, for infinitesimal transformations, 

(103) 

(104) 

(105) 

and evaluates the change in the path integral measure; this gives the gluonic 
contribution which violates axial current conservation. According to Fujikawa, 
the Jacobian of the transformation, 

[de] [de] --+ exp(2Tr(a(x)75))[d~][d¢] (106) 

must be regularized as 

2Tr(a(x)75) :=2  lim Tr(~(x)75exp(-~2/M2))-  (107) 
M 2 ---r c ~  

Before proceeding with the evaluation, consider first the anomalous contribution 
as it would result from C-function regularization. There, the path integral (103) 
evaluates to 

det(/~) = exp(Tr In/~9) -= exp(Tr 1n(-492)/2) • (108) 
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Note the analogy with the WKB formula (40) for the effective action induced by 
quantum fluctuations at the semiclassical level; this illustrates the semiclassical 
character of the anomaly. The object above is easier to evaluate if one more 
generally considers an arbitrary fermion mass, i.e. 

exp(Tr ln(-492)/2) --~ exp(Tr 1n(-49 2 + m2)/2) . 

The trace is regularized by writing it in terms of a C-function: 

  T ln(-492 + m 2 )  = - s=o 

with 

; ( s )  =  Tr(-49 2 + m 2 )  . 

(109) 

(110) 

(111) 

For sufficiently large s, this trace converges. Consider now the change of the 
Dirac operator in the Lagrangian under an infinitesimal chiral rotation: 

49 -~ (1 + a7~)49(1 +a75)  ~ 549 = {49,a75} (112) 

m --+ (1 + a75)rn(1 + a75) =~ 5rn = 2ma75 (113) 

and therefore, 

5(-49 2 + rn 2) = -492aTs - 2g)aTs]/) - a79P 2 + 4rn2a75 . (114) 

Under the (for sufficiently large s) convergent trace, however, one can cyclically 
permute the operators and thus, the variation of the ~-function can be given as 

5~(s) = 2(-s)Tr[(-49 ~ + m2)-Sa(x)Td • (115) 

Consequently, the derivative of the G-function in the vicinity of s = 0 varies as 

5 ( ( s )  ~ -2Tr[(-49 2 + rn2)-~a(x)75] (116) 

since the other term is suppressed quadratically in s. This can be written in 
integral form: 

- 2  f dt tS-le-mhTr(exp(-t492)a(x)~5) • (117) 
F(s) J 

5 i ' ( s )  - 

However ,  because of 

lim 1 f tS_le_mht, ~ F(n + s) s-~O ~(s)  j d t  = ~-~olim F(s) (m2) -(n+~) = 5no (118) 

the integral (117) is dominated by the value of the trace at t = 0,  provided that  
the trace is a regular function in t (this will be verified below). Thus, 

-(f~'(S)ls= 0 = 2 lim Tr(exp(-t492)a(x)75) (119) 
t--~0 

which is exactly the Fujikawa prescription (107) for the anomalous contribution. 
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The anomaly can finally be computed explicitly in the following way, where 
the trace runs over Dirac indices and space-time: 

2Tr(a(x)~/5) := 2 lim Tr(a(x)~/5 exp(- t02))  (120) 
t---~0 

- 2 lim Tr[(exp(-t0~_ ) - exp(-t49~))a(x) ] (121) 
t - + 0  

where 

0 ~, = 02 + (D  2 - 02) + o .  (B  ± E)  (122) 

and the Dirac trace has been partly taken. To leading order in t, the exponentials 
can be separated, 

2Tr((~(x)75 ) = 2 lim Tr[a(x)e -t°2 (e -t(D2-O2+a'(B+E)) - e-t(O2-O~+a(B-E)))] 
t-+O 

= 2 lim Tr[o(x)e -t°2 (4t2E • B + O(t3))] (123) 
t---+O 

where the Dirac trace has now been completely taken, eliminating all terms 
proportional to a-matrices. The trace over space-time indices can be performed 
e.g. in a basis of eigenfunctions of the (four-dimensional) position operator (Fuji- 
kawa orginally used a plane wave basis). Consider a diagonal matrix element 
corresponding to the position vector x0. The electric and magnetic fields are 
simply evaluated at x0; the operator exp(- t02)  corresponds to the (Euclidean) 
"time"-evolution operator for a free particle on four-dimensional space. The wave 
function for this particle given that,  initially, it is taken to be localized, is 

1 exp( - (x  - Xo)2/4t) (124) (x[e-t°~[Xo) = (47rt)2 

(cf. (7), where the mass has been set to m = 1/2, and the direction of propagation 
has been taken to be the (negative) imaginary time axis). Thus, taking the 
diagonal matrix element yields 

1 
(Xol4t2aE • Be  -t°2 Ixo> = 4t2a(xo)E(xo)  • B(xo)  (41rt) 2 (125) 

to leading order in t. Taking the whole trace now corresponds to summing over 
all x0, i.e. 

1/ l/d~xo~.F,.F,~ 2W~(~(x )~ )  = ~ d4~o ~ E .  B - S~ 2 (126) 

Note that  this derivation also explicitly shows that  the limit t --+ 0 in the def i -  
nition (120) is indeed regular, as claimed above. 

Furthermore, note that  in QEDI+I, the same treatment yields, using 

~O 2, = 02 + (D 2 - 02) ± E, (127) 
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for the anomaly: 

2Tr(a(x)75) = 2 lim Tr[a(x)e -to2 (-2tE + O(t2))] 
t - - -~0 

(128) 

= / d2xoa(xo)(-4tE(xo))41t (129) 

1 / d2xo aE (130) 
7r  

-- 27rl / d2xo ote~vFtW . (131) 

In order to study the physical consequences of the anomaly (cf. Sect. 4), it is 
important  to clarify how it enters physical quantities, such as currents. The 
divergence of the Noether current associated with a symmetry transformation is 

5L 
O'J~(x)- 5a(x) (132) 

where a(x) parametrizes the symmetry transformation. Thus, if L is invariant 
under the transformation, the current is conserved, such as the axial current 
Z~(x) = ¢(x)~,75¢(~)  in the classical theory for zero fermion mass. Including a 
mass term explicitly breaks chiral symmetry and one obtains 

O~'J~(x) = 2im(~(x)7~¢(x) . (133) 

In the quantum theory, the additional effective term (126) is subtracted from 
the action and (133) is modified to 2 

Ot'J~(x) = 2im¢(x)75¢(x) + e2--~-*P~'VF (134) 
871.  2 ~ / ~ v  - 

This relation will e.g. allow directly a computation of the rr ° ~ 27 decay width. 
Historically the axial anomaly was first discovered computing the triangle 

diagram (Fig. 2). The relationship between the anomaly defined in terms of the 
Fujikawa prescription and the diagram can be established in the following way. 
First the fermion mass is neglected, as we already know that  it does not appear 
in the final result. From the original expression for the quantum corrections to 
the Dirac or Yang-Mills Lagrangian, i.e. Tr ln~ ,  one sees that  its change under 
chiral rotations is 

5Tr 1n49 = 2Tr[757~a(x)(~9) -1] (135) 

where (112) has been used. Now (49) -1 in (135) is expanded in the form 

= ( q ) - i  + + + . . . .  

The Dirac trace cancels the two leading terms, and so 

5Tr l n ~  = 2Tr[(~/)-le41(q)-le4i(q)-1757,0"a + . . . ] .  (136) 

This shows that  the leading term in the anomaly is just the triangle graph. 

2 Here, the electrical charge has been pulled out of the field strength to explicitly 
display the dependence. 
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3.5 The  Wey l  A n o m a l y  

In this section, the Weyl anomaly is considered in the case of a two-dimensional 
string theory in a gravitational field. The corresponding path integral is 

z = f [dgi/4X]exp (-  f d2x-~gg~O~XdO~X d) (137) 

(cf. Sect. 3.2), which is constructed to be invariant under general coordinate 
transformations but has an anomaly with respect to Weyl invariance. General 
coordinate invariance in particular permits the choice 

g ' V ( x )  = p (x ) r l  "~" = e2a(x)~ ' ' '  (138) 

for the metric; in this frame, a Weyl transformation corresponds to c~(x) --+ 
a(x) + w(x). The path integral now reads 

z = f [d//ZX]exp ( f  dz=XaO~X ~) (139) 

= f [dY]exp (- f d2z yaDY ~) (140) 

where 
I (141) D = 02 v~ " 

Under a Weyl transformation, 

y ~ y '  = e~(Z)Y (142) 

the change in the path integral measure is (cf. Sect. 3.3) 

J = exp(Trw(x)) (143) 

= exp ( l im2 f d2xw(x)GD(X,x, it)) (144) 
\ t - --~O 

where the overall factor 2 comes from the trace over string components. The 
kernel evaluates as 

GD(x,x, it) = 
= ~ ¢; , (z )e -° '¢ - (~)  

'D. 

- (27r)~ 82kexp ( 8 + i k )  2 t 

_ l(2r) 2t fdzkexp(~(ik+v~&_~ ) 

(145) 

(146) 

(147) 

(148) 
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1 / ( ~ p  ~pp) 
= (27r)2 t k dk d v exp ( -k  S + 2iv/tkO + tO 2) (149) 

1 / d~oe_k2/o 
- (27r)2 t k dk 

• 1 2 1 t (kOp)2 + O ( t a / 2 ) )  (150) ( l  - ~ ( k O P )  + t--~O v~ 2p4 

1 I1 1/ 
sp ~ ] 

1 ( P  + 8-~(-021np) ) (152) =-~ 

1 1 ~o (153) 47r021 + ~-~rt e • 1 

Note that,  in contrast to the axial anomaly, the singular piece in t does not 
cancel. Physically, this can be interpreted as an (infinite) renormalization of the 
cosmological constant; the motivation for this will become clearer further below. 
Denoting the renormalized cosmological constant as ~/2r, the anomaly finally 
becomes 

l n J  = / d2xw(x) l (-02a(x) + ~J , (x ) )  . (154) 

Having calculated the Weyl anomaly, one can show that it is equivalent to the 
presence of a dynamical gravitational field, described by the so-called LiouviUe 
Lagrangian. To see this, transform the metric guy (x) by a sequence of infinitesi- 
mal Weyl transformations to the fiat metric ~'v,  i.e. transform away a(x): 

a -+ a(1 - As) --~ a(1 - 2As) --+ . . .  ~ 0 • (155) 

At the n-th step, where nAs= s, one has 

as(x) = a(x)(1 - s) (156) 

~(x)  = ~ a , ( z )  = ~ (x )As  (157) 

and the resulting anomalous contribution from this step is 

lnJs = f d2za,x,As ( - l  o~a(x)(1-s)+ -~-~e 2'~(~,(x-s,) (158, 

The accumulated contributions when s = 1, i.e. as = 0, amount to 

as InS8 d2x (a(x)(-02)a(x) + ~e 2a(x) - ~) . (159) 

The last term can be dropped, since it merely constitutes a renormalization of 
the energy, and thus one obtains the Liouville action 

SL = f d2x ~---~((Oa)2 + ~e2~) = f d2z £L . (160) 
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In covariant notation, 

SL O( / d2x x/~(R[:]-IR + ~) (161) 

where R is the Riemann scalar, R .~ 02a. This is Polyakov's two-dimensional 
version of gravity; note that Einstein's gravity becomes trivial in two dimensions 
because it reduces to a total divergence. Note also that the factor ~ multiplying 

in (161) is simply the covariant measure for the space-time integral. Thus the 
interpretation of ~ as a cosmological constant (which can be arbitrarily chosen) 
is justified. 

Summing up, the Weyl anomaly has been substituted by dynamical terms 
for the gravitational field: 

f [dgl/4X]exp ( -  / d2x ~g g~VO~xdovx d) 

= /[dX]exp (-- / d2x ~ggJ*Vo~xdovxd -- f_.L) . (162) 

4 Physical Consequences of Anomalies 

4.1 Fermion Generations and the N u m b e r  of  Quark Colours 

In the Standard Model, the requirement of renormalizability, which can be spoi- 
led by anomalies, places restrictions on the number and types of fundamental 
fields. More specifically, the electroweak Lagrangian density 

£ = £Gauge + £H~gg8 + £F (163) 

in particular contains the fermionic part 

£F = ¢L'7" (iOn, + g2 (a a/2) W; - gx (]I/2)B u)¢L (164) 

+fiR'7 • (iO, + gl (a/2)B~,)aR (165) 

+bn'7" (iOu + gx (~/2)B,)bn (166) 

where 

= I + Y  ~ = - I + Y  (167) 

¢ = (a,b)= (v~,e-),(u,d),.... (168) 

Since the projection operators onto the chiral components eL and CR contain 
'75, the theory allows for anomalous triangle graphs. These have potentially di- 
sastrous consequences for the renormalizability of the theory. For instance, the 
gauge field propagator contains graphs of the form shown in Fig. 4.1, the an- 
omalous contributions of which give the propagator a longitudinal part. When 
renormalizing this part, the necessary counterterms would be of a form which 
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Fig. 1. Contribution to the gluon propagator 

does not appear in the original Lagrangian [3], thus spoiling renormalizability. 
For a further discussion, see also [11]. 

The only known way out of this problem is the following: In internal tri- 
angle graphs, as above, all possible fermionic particles participate; therefore, a 
judicious choice of the fundamental fermion fields allows for a cancellation of 
the anomalous contributions. In the electroweak Lagrangian, the coupling at the 
vertices is proportional to the hypercharge Y or the weak isospin aa/2; when cal- 
culating the triangle graph, the trace with respect to the corresponding internal 
indices must be performed, i.e. one has contributions proportional to 

tr(Yaaa ~) and y3 (169) 

(contributions containing an odd number of isospin couplings already vanish 
when taking the trace). Thus, to guarantee an anomaly-free theory, the sums 
over all particles must vanish: 

Z tr(Ya"a") = Z Y3 = O. (170) 

Since the vertices do not change the helicity, right- and left-handed particles give 
the same contribution; it therefore suffices to consider left-handed particles, the 
hypercharge assignments of which are 

v ~ (ut,, dz) fiL dL (171) (L,eL) ez 
( - 1 , - 1 )  2 ( 1 / 3 , 1 / 3 ) - 4 / 3  2/3 

(the brackets denote weak isospin doublets). Note also that the higher generati- 
ons of fermions merely replicate this scheme. Thus one obtains 

~ r 3  = 6 -  2No (172) 

Z tr(Ya~aa) = 3 ( -2  + 2Nc/3)  (173) 

where it has been taken into account that quarks come in Nc colours, and that 
t r(aaa ~) = 0 for isospin singlets, and tr(a~a ~) = 3 for doublets. One must 
now conclude that the Standard Model is only anomaly-free if the number of 
quark colours is Nc  = 3, and if leptons and quarks always come grouped into 
generations like the first generation treated explicitly above. In particular, the 
existence of the top quark is necessary to complete the third generation. 
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4.2 w°-Decay 

An important consequence of the anomaly is the fact that the neutral pion can 
decay into two photons. The pion is interpreted to be the Goldstone boson of 
the spontaneously broken approximate SU(2)IR x SU(2)IL chiral symmetry of 
QCD. Only the vector part of this symmetry survives; the axial current by 
contrast does not annihilate the vacuum, but its divergence at zero momentum 
creates the Goldstone boson. The assumption of PCAC is that this relation can 
be extrapolated to finite momentum: 

(174) 

A more thorough discussion of this can be found e.g. in [6]. 
From this, one can evaluate the decay of the neutral pion 

<,r°12,'),) : (m2 f,r) -~ (010~',)'5'3i2~,) (175) 

(the third component of the SU(2) current corresponds to the neutral pion). 
One can show that, for low momenta, the contribution to 0~J  5 from the quark 
mass term (cf. (133)) vanishes in the matrix element (175); neutral pion decay 
is due to the additional anomalous term (cf. (134)) which O~J 5 acquires when 
coupled to the electromagnetic interaction: 

1 
= (m~A) - l (O l *F ' "F .~12"7 }a -~ t r (Q2a3 /2 )  (176) 

_ 1 tr(Q2~3)~vx, k~k~eXe~, (177) 
167r2m2~/. 

where kl, k2 are the momenta and e, e' the polarization vectors of the photons. 
It was already pointed out in Sect. 3.4 that this result can also be obtained by 
evaluating the corresponding triangle graph (Fig. 2). It is in good agreement with 

kl 

t p -  ki  

k2 

Fig. 2. The triangle graph 
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experiment if one notes that, for this low-energy effect, the only participating 
fermions are the proton and the neutron, and thus 

tr(Q2a 3) = Q 2 _  Q2 n = 1.  (178) 

On the other hand, if one describes the decay on the quark level, one has 

tr(Q2a 3) N~ 2 = c ( Q u  - Qed) = Y c / 3  (179) 

which is further evidence that the number of quark colours is indeed N c  = 3. 

4.3 Baryon-Lepton Decay 

Additional consequences of the anomalous gluonic contribution to the axial cur- 
rent (cf. (180)) result from the fact that this contribution induces an instanton- 
fermion interaction in analogy to the electromagnetic coupling responsible for 
the decay ~r ° -~ 27 discussed in the preceding section. One can derive an ef- 
fective fermion-fermion interaction Lagrangian in the presence of an instanton 
background [7]. This leads to baryon decay in the case of an electroweak in- 
stanton background (see Sect. 2.5). The amplitude for such a decay is, however, 
proportional to the tunneling amplitude between two distinct In)-vacua, i.e. the 
exponential of the instanton action. This gives a typical half-life of 1015°a, which 
is negligible compared to the proton half-life derived from GUT theories, 10a°a. 
However, at temperatures above 200 GeV, which prevailed in the early universe, 
direct transitions between different In)-vacua become possible, and thus baryon 
number-changing processes by this mechanism may not be negligible anymore. 

4.4 The U ( l ) - P r o b l e m  

The axial anomaly also plays an important role in the resolution of the so-called 
U(1) problem. The QCD Lagrangian has a U(1)f,L × U(1)f,R symmetry, of which 
only the vector part manifests itself, namely in the conservation of baryon num- 
ber. Explicit realization of the axial part would mean the seperate conservation 
of left- and right-handed fermion doublets, e.g. negative parity partners of nu- 
cleons. Such particles are not found experimentally. Thus one would conclude 
that the U(1)A symmetry is spontaneously broken. In that case, however, one 
should observe a corresponding (isoscalar) Goldstone bosom Such a particle is 
also not found in the physical spectrum. This puzzle is known as the U(1) pro- 
blem. 
The puzzle is solved by the fact that, due to the axial anomaly, the U(1)A 
symmetry is broken explicitly since 

2 

0~'.15~, = 2i(muf i75u + mdd75d) + 4-~2 tr(*G~G~,~) (180) 

and the right-hand side is not zero even in the zero quark mass limit. Thus the 
symmetry is broken explicitly and there is no Goldstone boson. 
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At first sight this explanation may seem too simplistic, because the anomaly 
term on the right-hand side of (180) is itself a divergence, namely O~'S~, where Sv 
is defined in (45) and thus (in the zero quark-mass limit) the total current J~+S~, 
is conserved. However, as we have already seen, the charge Q associated with 
S ,  is gauge-variant. Hence the total current is gauge-variant and non-physical. 
What  this means is that  in the non-physical space of gauge-variant quantities 
the symmetry breakdown may be regarded as spontaneous (with the massless 
field Sv-field as the gauge-variant Goldstone field). But in the physical space of 
gauge-invariant quantities the breakdown is explicit and there are no Goldstone 
fields. 

One of the most interesting features of this resolution of the U(1) problem is 
that  it not only explains why the ~' particle is not a Goldstone particle but, when 
combined with the existence of the 0-vacua of Sect. 2.5, it provides an estimate 
for the ~' mass and for its decay into three pions. The point is that  if one adds 
to the Lagrangian a term of the form 0 f F • F to take care of the 0-vacua, 
expands the Fermion Lagrangian about the instanton solutions and sums over 
all instantons, the term 0 f F * F and the zero-modes of the instantons combine 
to generate an effective potential for the rf field and this effective potential 
provides a mass-term (proportional to the gluonic condensate < ( F ' F )  2 >) and 
a 3 - 7r decay for the tf. This is explained in references [12], [13] and [14], though 
it should be mentioned that  the arguments given there are somewhat qualitative 
and there is still some dispute [15] about the details. 

A Proof  of Equation (5) 

One starts from (11) and differentiates it once with respect to time. Using the 
classical Hamilton Jacobi equation ((3) with h 2 = 0) one gets 

0 1 0 0 
+ --m F_, v, = o 

k 

This equation is differentiated once more with respect to the final position x i. 
With the definitions 

0 
M,j = ~xipj  

and 

one gets 

~2 

N~, - Oz,Oz----~ S 

OtM + 1 N M  + I (VS) (VM) = O. 
m m 

This equation is multiplied from the right with M -1, then one takes the trace 
of the matrices. 

Tr(M-IOtM) + 1 T r m  + l V S T r ( M - I V M )  . (181) 
m m 
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For the next step the following identity is used: 

TrM(A)-I 0~M(A) = OdetdetMM 

This can be shown easily by writing the trace and the determinant in terms of 
the eigenvalues of M. With this and TrN = V2S, equation (181) becomes: 

a~ det M + l(v2SdetM+~TSVdetM) 0 .  
m 

This is again the continuity equation (4). Therefore 

O~.S 
p c( det M = det( Oa~cgx----~ )" 

The normalization is again fixed by the initial condition. 
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1 I n t r o d u c t i o n  

In this lecture we discuss anomalies in QED and QCD [1], [2]. The physical 
picture which we shall present for the class of chiral anomalies is believed to be 
universal, independent of the dimension of space used for the formulation of the 
theory. However, only in two dimensions a simple fermion dynamics allows us to 
develop the picture explicitely, and thus in the first part of the lecture we shall 
be concerned with two dimensional QED with massless fermions, the Schwinger 
model. In the second part we shall introduce still another class of anomalies, 
so called trace anomalies and turn to the question of the implications of the 
existence of anomalies on hadronic reactions. In particular we discuss the decay 
of a light Higgs particle into a fermion-antifermion pair and the influence of the 
anomaly on the branching ratio for decay into leptons vs. decay into hadrons [2]. 

2 T h e  C h i r a l  A n o m a l y  i n  t h e  S c h w i n g e r  M o d e l  

We now study chiral QED in 1+1 dimensions, and in order to be able to extract 
the essence of the chiral anomaly we shall simplify the model sucessively. In this 
way we shall arrive at a picture for the anomaly which indeed is very simple to 
interpret, since it originates from the discussion of fermions coupled to a single 
quantum mechanical degree of freedom and the remaining global symmetries. 

2.1 QED on a Small  Circle 

The starting point for these considerations is the QED Lagrangian 

_ 1 
4e~F~,,,F~'" + ¢ ' ~  (iOn, + A , ) ¢  

* Lectures presented at the workshop "QCD and Hadron Structure" organised by the 
Graduiertenkolleg Erlangen-Regensburg, held on June 9th-llth, 1992 in Kloster 
Banz, Germany 
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with the dimensionful coupling constant eo (dimension of eo -- mass) and the 
following choices for the (chiral) representation of the fermion field and the 7 -  
matrices 

( ¢ 1 ) ; 7 °  71 75 ¢ = ¢2 = a2, = in1, = a3 • 

The components of the fermion spinor are eigenstates of chirality, i.e. right (left) 
handed spinors are 

(0) 
CR= ; ¢ ~ =  ¢2 ' 75¢R=¢R,  75¢L=--¢L"  

Although the dynamics of the fermions is already very much simplified by using 
a formulation of the theory in one spatial dimension only, it is nevertheless still 
nontrivial. This can be seen easily from the fact that  a charged particle is the 
source for a linearly rising scalar potential (two static electric charges can not 
be infinitely separated in one dimension) which acts as a confining potential for 
a particle of opposite charge. Consequently the physically observable states will 
.not be simply related to the fields appearing in the Lagrangian and therefore 
the dynamical problem can not be simple 1. In order to simplify the dynamics 
further we use the fact that  the kinetic energy of quantum states increases com- 
pared to the interaction energy when they are enclosed in a small box. Thus 
we replace the infinite interval by a circle of finite length and thus introduce a 
new dimensionful parameter, the length of the circle L. The advantage of having 
another length scale is that  the interaction strength can now be measured. It 
then becomes possible to go to the limit where eoL is very small and where the 
Coulomb interaction can be treated as a perturbation, which actually will be 
even neglected in our discussion. 

In such a formulation on the circle it is then necessary to specify boundary 
conditions for the fields, which we choose for convenience in the following way 

L n L L t) 
A~,(x = - - ~ , t )  = A , ( x  = ~ , t ) ;  ¢(x = - ~ , t )  = - ¢ ( x  = -~, 

Note that  for fermions more general boundary conditions could be used due 
to the fact that  only bilinears of fermions are important.  According to these 
boundary conditions we have the following Fourier decomposition of the fields 

At , (x ,  t) = ~ a~,(k, t)e i2~k~/L (1) 
k 

¢(X, t) = E ¢(k, t )e  i~r(2k+l)x/L . (2) 
k 

1 An argument supporting the existence of confinement independently of the assump- 
tion of nonrelativistic motion of the fermions is the infinite difference in field energy 
associated with charged states compared to charge neutral states. 
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The gauge freedom which we did not yet take into account can then be used to 
gauge all Fourier modes of A1 away except for the zero mode al (k = 0, t). This 
elimination is achieved by applying the following gauge transformation 

k¢:o 

which is obviously not applicable for k = 0. The result for the gauge field is 

A~ = A x ( x , t )  - axc~(z ,  t) = a ~ ( k  = O,t)  = a ,  , 

a space independent component al .  In other words a single quantum mechanical 
degree of freedom is left, since the gauge we have chosen is just the Coulomb 
gauge 01A1 = 0. The scalar potential  A0 on the other hand can be neglected 
entirely in the limit of very small values for eoL which is evident from Poisson's 
equation (in the Coulomb gauge) 2 

02Ao = - e o C t ¢  ~ ao(k,t) ~ eoL << l . 

Thus in this simplified version we are left with fermions only coupled to a single 
quantum mechanical degree of freedom al (0, t). Since this gauge field excitation 
does not carry any momentum, there is no coupling of different Fourier modes 
of the fermion field in the Hamiltonian and the dynamics consequently is almost 
trivial. Nevertheless the anomaly is still present even after all these simplificati- 
ons have been introduced, since it reflects only global features of the theory, as 
we shall see soon. 

2.2 T h e  O r i g i n  o f  t h e  C h i r a l  A n o m a l y  

The existence of the chiral anomaly is closely related to the fact that  despite 
fixing the gauge as we did, it is possible to perform further non-tr ivial  gauge 
transformations with 

27r 
a (x , t )  = -~nx;  n = 5=1, 5=2 , . . . .  

These are compatible with the gauge fixing and with the boundary conditions 
since both exp[ia] and 01c~ are periodic. Since al changes by 27rn/L under these 
transformations, these values should in fact be identified which implies that  al 
is itself a periodic variable just like an angle [3]. Before following this line of 
argument further we briefly remind you where the notion of an anomaly arises. 
The basic observation is that  for massless fermions, the case we are dealing 

2 Note that the simple argument can be used because of the super-renormalizability of 
QED in 1+1 dimensions, according to which we do not have to worry about possible 
renormalizations of these expressions. 
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with, the Lagrangian posesses two independent symmetries on the classical level. 
Namely it is invariant under (phase) rotations 

¢ --+ e i °¢ ,¢f  Cte-  ; O.j = = 0 

and it is invariant under chiral rotations 

¢ --+ e i ~ 5 ¢ , ¢ t  ~ Cte- i~5;  =~ Opj 5" = 0,¢7P75¢ = 0 . 

The corresponding charges Q and Q5 are conserved and they are just the sum 
and difference of the charges of the right handed and left handed fermions re- 
spectively. Thus the numbers of these fermions, which differ in their charge and 
axial charge assignments as shown in Table 1, are separately conserved on the 

Table 1. Charge and axial charge of left and right handed fermions and anti-fermions 

eL CR ~L ~R 
Q +1 +1 -1 -I 

+1 -1 -1 +1 

classical level, i.e. in any Feynman diagram which does not contain loops. The 
anomaly then consists in the observation that the axial charge Qs is not conser- 
ved anymore after quantization. 

In order to understand how this anomaly arises we make an additional as- 
sumption which will be justified from the result. We treat the quantum mecha- 
nical variable al as a slow variable which may be considered as frozen while we 
are solving for the fermionic dynamics. Thus we only have to solve the Dirac 
equation for the fermions with al fixed 

i ~ 0" 3 - -  = 

Since al is considered as constant, the solution for the coefficients of the Fourier 
expansion (2) is 

exp [-iEk,.) t] ) 
¢(k,t) = exp [-iEkta)t] 

( 1 )  2~r 
Ek(n) = k +  --L + al 

Ek(R) =- -  k +  - - ~ - a l  

(3) 

(4) 

(5) 
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and we observe that  for al = 0, al = 27r/L, which are gauge copies, the spectra 
are identical. However, having filled the negative energy states for al = 0 and 
changing al adiabatically from al = 0 to al = 2~r/L we notice that  the resulting 
state is no longer a vacuum state, since a hole associated with the right handed 
fermions and a particle associated with the left handed fermions is produced 
(Fig. 1). Thus we observe that  the total charge is conserved in this transition, 
because particle and hole irrespective of their handedness have opposite charges, 
but the axial charge is not conserved and in fact one finds that  it changes by 
two units. From this observation we can then reproduce the standard form of 
the anomaly equation 

AQs = L Aal =~ Q5 = 1 I L l 2  - dxJll (x, t) (6) 
7r 7~ J- -L~2 

=~ / dx ( j s °  - l A~) =constant  (7) 

negative 

energy 
states 

OI3 

OE] 

• U  

! 

ax ----0 

O G  
O~'/~ L-particle 

• • R-hole 

2 x  
al---~-- 

Fig. 1. Single particle levels in the zero mode background field 

Introducing the field strength tensor into this expression we recover the form 
in which the anomaly is usually expressed 

c3~,j 5~" = l e ~ ' F ~ ,  . (9) 

Although the anomaly equation is correctly reproduced including all factors foo- 
ting on the observation that  the axial charge changes by two units, the rigorous 
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derivation of this fact is actually more subtle. Indeed, what is needed is a proper 
definition of the charge operators, since the existence of an infinite number of 
negative energy states and the necessity of filling the Dirac-sea makes them ill 
defined without regularization. One way of defining them is point splitting of the 
current operators. However, in order to maintain gauge invariance it is necessary 
to add an appropriate line integral over the gauge field. Thus we can define the 
current in the following way 

l.'reg= lim x + e , t ) 7 ,  exp - i  A l ( z , t ) d z  ¢ ( x , t ) - < O [ . . . [ O >  

which results in the expression for the regularized right(left) handed charges 
QR(L) 

QR(L) = ~ e-ie[(2k+l)n/L+al] 

kR(L) 

where the sum extends over the occupied states which are different in the vacuum 
for right and left handed fermions. In the vacuum defined previously one then 
finds 

L L 
(QL)vac - - i 2 r e  + 2--~ al + O(c) , (10) 

L L 
(QR)vac -- i2re 2~r at + O(e) . (11) 

The singular contribution to the charges can be subtracted, since it is indepen- 
dent of the dynamics and just reflects the contribution of the infinite number of 
states in the Dirac-sea. One therefore finds that  the regularized charge operator 
Q = QR + QL is t ime independent, whereas the regularized axial charge operator 
Q5 = QR - QL is t ime dependent through the appearance of al which is just 
the observation of the chiral anomaly. Note also that  we have now two facets of 
the anomaly; one is level crossing at zero energy, the other comes from ultravio- 
let regularization which forces a regularization and allows for appearance and 
disappearence of energy levels with energies in the cutoff region. 

We thus see that  there are in fact three essential ingredients for the existence 
of the anomaly 

(i) The existence of an infinite number of levels 
(ii) Appearance of the Dirac-sea after second quantization 

(iii) Level crossing under gauge transformation and the reinterpretation of the 
vacuum wave function associated with it. 

There is however no dynamics involved in the whole derivation and we believe 
this to be true also in gauge theories in four dimensions such as QCD, where 
anomalies are known to exist. In these theories, however, the simple reduction of 
the dynamics no longer goes through. It is still possible to obtain the anomalous 
divergencies of axial currents as an effect of the ultraviolet regularization, but  
the connection to level crossing at zero energy can no more be obtained because 
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of complicated and basically unknown infrared dynamics in QCD. However, an 
understanding of the anomaly in terms of the existence of a level flow leading to 
the disappearance of levels in the cutoff region is still accessible. 
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Fig. 2. Effective potential for the al variable obtained from the Born-Oppenheimer 
approximation 

2.3 Vacuum Wave Function and Remarks  

Let us finally come to the justification for working with al as an adiabatic varia- 
ble. It is obtained by solving the dynamical equation for the gauge field variable 
after having determined the fermion state in the presence of a static al varia- 
ble. This is the usual procedure called Born-Oppenheimer-Approximation and 
it leads to the following effective Hamiltonian for the gauge field variable, when 
the expectation value of the regularized Hamiltonian in the fermionic ground 
state is taken 

[:" ] exp - i  Al(z,t)dz ¢(x,t)lOle,m. > (12) 

( : )  L L - + (13)  

where Ldl should be interpreted as canonical momentum associated with al. 
The resulting Hamiltonian, the potential is shown in Fig. 2, obviously descri- 

bes a harmonic oscillator in the al variable which is oscillating with frequency 
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WA = eo/v~. This frequency has to be compared with the corresponding one 
for the fermions which according to eqs.(4,5) is we ~ 1/L and this yields the 
justification for the Born-Oppenheimer-Approximation since we find 

- -  .~ e o L  << 1 
we 

We thus observe that filling the negative energy states of the fermions for al = 0 
leaves al oscillating slightly around the value zero; filling the negative energy 
states for al = 2rn/L gives an oscillation of the gauge degree of freedom around 
this value. Note that large fluctuations around the equilibrium positions would 
have invalidated the Born-Oppenheimer approximation. As a consequence there 
exist for all n stable solutions which are mapped into each other under gauge 
transformations. The true ground state (because of its cluster decomposition 
properties [4]) is obtained as a superposition of these equivalent states for definite 
value of n which yields the well known 0-vacuum in chiral QED(I+I) 

2Tr ¢,~(fermions) (14) = CA(a1 - T - ) .  

~vac = ~ e'°'~k~,~ (15) 

which has the correct cluster decomposition properties. Furthermore, the chi- 
ral symmetry is broken in this vacuum resulting in a non-vanishing fermionic 
condensate value. 

As a final remark we would like to add that the result for the anomaly may 
also be obtained by standard use of Feynman graph techniques. It is thus not 
inevitable to follow the reasoning of this lecture, where we have put the emphasis 
more on the infrared aspect of this anomaly, but it may also be obtained purely 
as an ultraviolet effect. (See, e.g., the lectures by L. O'Raifeartaigh or R. Jackiw 
in this volume.) 

3 A n o m a l i e s  i n  Q C D  a n d  I m p l i c a t i o n s  

To discuss the implications of anomalies for hadronic reactions it is of course 
necessary to switch to four dimensions and, in particular, we shall discuss the 
consequences in "QCD": Since gauge theories in four dimensions have to be 
renormalized, the scale invariance of the classical theory gets lost after quanti- 
zation and a length scale is introduced. The consequence is that not only chiral 
anomalies occur which may already exist in super-renormalizable theories like 
the Schwinger model, but, in addition, one encounters the so-called scale (or 
trace) anomalies. 
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3.1 Anomal ies  in QCD 

To become more specific, we recall that the classical Lagrangian 

q=u,d,s 

is invariant (for massless quarks) under 

(i) Scale transformations x --+ Xx 

qCx) -~ ,ka/a q(.Xx) (16) 

Az(x ) -+ AA~,(Ax) (17) 

(ii) Flavor rotations generated by the group SU(3)v x SU(3)A × U(1)A x U(1)v 
which have different realizations in nature 
(a) SU(3)v is realized linearly (in the Wigner-Weyl mode, where the ground 

state respects the symmetry), leading to SU(3) multiplets in the obser- 
ved spectra of hadrons 

(b) SU(3)A is realized non-linearly (in the Nambu-Goldstone mode, where 
the ground state breakes the symmetry), causing the existence of the 
octet of nearly massless Goldstone bosons 

(c) U(1)A is afflicted with an anomaly (the latter manifests itself in a compa- 
ratively large mass of the ~?~-meson compared to the other pseudoscalar 
mesons) 

(d) U(1)v is not anomalous and is associated with the conserved baryon 
number 

By quantization and renormalization two anomalies are induced: the chiral an- 
omaly in the axial flavor-singlet current which has already been discussed in the 
previous section (in the context of QED) 

~la'5__ nFOls pvpo'(-~.a ('-~Ta 
J Ia 87r E - -  /~ v - -  p a 

and the scale anomaly in the trace of the energy momentum tensor Oz~ 

/3(~,)G. ,~G . ba, . ~ a 0~ - 8~, - ' ~  = - 4~ 'G " G'v + " "  (18) 

where ~, is the strong coupling constant./3(a,) = - b ~ / 2 r  is the renormaliza- 
tion group/~-function and np stands for the number of quark flavors. 

Taking into account the coupling of an electromagnetic gauge field as well as 
the gluon field, the scale anomaly gets an additional contribution 

and in addition an anomaly arises in the neutral axial isospin current, leading 
to the famous contribution to the Ir ° --+ 2V decay at low energies [5], [6] 

0.  _ a ; .  ; s d )  = - Q ] )  



166 M.A. Shifman 

3.2 Decay of Light Higgs Par t i c les  

To demonstrate consequences of the existence of anomalies on reaction cross 
sections, we assume now that in addition to gluons and photons there exists a 
light Higgs particle coupled to heavy quarks. As we shall argue, the presence of 
the scale anomaly reverses the naive dominance of the decay of a light Higgs 
particle into # + # -  pairs into dominance of the decay into hadronic channels. 

We assume the coupling of the Higgs field H to be similar to the coupling in 
the standard model 

< H >  
! 

with )~! depending on the current quark (lepton) masses m f  and the non- 
vanishing vacuum expectation value of the Higgs field < H >. Note that the 
vacuum expectation value is not generally related to Fermi's weak coupling con- 
stant GF. We assume furthermore that the mass of the Higgs particle is about 
rnH ---- 1GeV in order to be able to eliminate the quarks much heavier than the 
Higgs in low energy reactions deriving in this way an effective interaction. Using 
the interaction Lagrangian as given above we expect the cross section for decay 
of the Higgs particle into leptons p + p -  to be of the order of 

2 m / j  
F ( H  --+ 2#) ¢x )~ 

< H > 2  • 

Correspondingly, naively one would expect the decay into pions to be of the order 
of (neglecting effects from hadronization which should not depend strongly on 
the quark mass) 

2 
r/2u,d 

F ( H  -+ 2~) o¢ ~ , d  o¢ < H >2 

and therefore leptonic decay should be favored by two orders of magnitude over 
decay into pions 

2 
F ( H  --+ 2p) ~ ~ ~ 102 . 

F ( H  -~ 27r) ,o a,',o,'r, atU rnu,d 

Note that due to the similarity in mass of muons and pions we do not have to 
worry about phase space factors in order to get a first estimate. However, the 
presence of the anomaly reverses this result and one eventually finds that 

w i t h  2 

F ( H  ~ 2p) o¢ m.__~_~ ~ 10_2  (19) 
r ( g  -~ 2r) ..omo~ mR 

The reason is that the transition into virtual heavy quarks decaying in an inter- 
mediate stage to gluons has to be taken into account, as well. This then leads 
to a decay matrix element of the form 

bcr8 a a~v + 
< 01- -g V,,vG In (pl)--(/)2) >=  (pl + p2) 2 + O(p 4) 

by virtue of the scale anomaly which then becomes proportional to the invariant 
mass squared of the Higgs meson. 
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3.3 T h e  A n o m a l y  C o n t r i b u t i o n  to  Higgs Decay 

The assertion stated above will be proven in two steps. First we derive from 
general principles the form of the matr ix element of the energy momentum tensor 
for transition from the vacuum into a two pion state. Next we derive the low 
energy form of the coupling of a Higgs to gluons by eliminating the heavy quarks. 

From Lorentz invariance and symmetry of ~,~ the structure of the matrix 
element must be 

M ~  =< ~+~- le~ lo  > = Ar ,  r~ + Bq~q~ + C(r~q~ + q,r~) (20) 

+ g ~  (Dlq 2 ÷ D2r 2 + Oar. q) (21) 

with r ,  = p(1) _ p(u2); q, = p(ul) + p(2) (22) 

~(1,2) 
with ~ the four -momenta  of r + ' -  respectively. From charge conjugation 
invariance of 8~,~ and the vacuum we have C = D3 = 0 and using energy 
momentum conservation 0 ~ , o  = 0 this expression can be reduced to the form 

q " M ~  = r2D2qo + q2 (Bqo + Cro + Dlqo) (23) 

=~ D2 = 0; B = - D 1  (24) 

M ~  = Ar~r~ + B (q,q~ - g,~q2) (25) 

Using the neutrali ty of ~,~, i.e. [O~,Q5] = 0, we find A = - B  and using 
crossing symmetry  to relate the upper matr ix  element to t h e  matrix element 
< 7r+l~,~lr+ >= 2p~p, we find the normalization condition that  A --- 1/2. 

Having determined in this way the form of the matr ix  element, we derive 
an effective Lagrangian for the interaction of the light Higgs particle. For this 
purpose we have to calculate the matr ix element for coupling to heavy quarks 
shown in Fig. 3a. As indicated in the figure, the virtual decay of the Higgs particle 

short distances large distances 
heavy quark loop scale anomaly 

JT 

H H / 

it 
g ~ 

(a) (b) 

Fig. 3. (a) Decay of a Higgs particle into pions via the scMe anomaly; (b) effective 
coupling o[ the Higgs particle to pions 

into heavier quarks is a short distance effect and leads to an effective coupling 
to gluons in a first step (Fig. 4). The gluonic state decays at long distance into 
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pions thus causing an effective coupling of the Higgs particle to pions (Fig. 3b). 
Therefore one finds from elimination of the heavy quarks the effective interaction 
(see appendix) 

a ,  [_IG~G.~,  ~ (26) 
£ ~ f f  - 127r < H > 

and using the relation between the gluon fields and the energy momentum tensor 
provided by the scale anomaly (18) as well as the result for the matrix element 

< r+~-I0".10 >= q2 = M~ (27) 

we find the effective coupling to pions to be of the form 

2Mh /~/r + ~ - 
£ e l f  (x 3b < H > 

where the energy momentum tensor known from the matrix element (27) has 
been replaced by 0~ ~ M ~ + ~  - . Therefore the quark masses in the aforemen- 
tioned ratio between decay into muons and into pions have to be replaced by 
the Higgs mass which reverses the result of the branching ratio as mentioned in 
(19). 

x 9 

H I ~-- 
o mq)m H 

y g 

Fig. 4. Heavy quark loop leading to an effective coupling of Higgs particles to gluons 

Although we have been discussing in this lecture only the effect of the scale 
anomaly on the decay of a light Higgs particle which is of course still a hypothe- 
tical one, we would like to mention that there are indeed effects in pure QCD 
to be observed, as well. There are e.g. the S-D-wave contributions to the decay 
g" --+ J / ¢  + 27r where experimentally found small D-wave contributions can be 
attributed to the scale anomaly. 

A The  Effective Interact ion Be tween  Higgs Part ic les  
and Gluons  

In this appendix we want to demonstrate how the heavy quark mass in the 
coupling of the Higgs particle to quarks is cancelled when deriving an effective 
coupling to gluons and how the field strength tensor arises. We work in the 
Fock-Schwinger gauge x~'A~ = 0 which allows us to express the gauge field by 
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the field strength tensor in the following way. We start from the expression of 
the field strength tensor 

a abc b c :r~'a~,, = x u (O~,A~ - O,,A u + 9f  a~,Av) (28) 

= x .  - ov (x.A~,) + A~ (29) 

= ~'O,,A~ + A~ (30) 

and then rescale the x ~' ~ ax u in order to use 

d (aAu(aX)) = Au(ax) + xPOpA~(ax) = axPG~u(ax) (31) 
da 

:* A~,(z) = a s  aG;~,(~x)zP (32) 

= x" + g~ D~ + . . .  a ; ~ ( 0 ) .  (33) 

Using this relation, we can calculate the loop shown in Fig. 4 for heavy quarks 
which propagate only over distances of order 1/mq for which the expansion (33) 
is valid. The matrix element for H ~ 2g then becomes 

f d4xd4yA~ (x)A; (y)Tr {S(x)7"S(y - xl 'y"S(-y)} M ( H  2g) 

f { [ + ] [ +  ]} = 4 G",,,G~ d~pT,  " S( -p ) ' y"  SO~) "y~ S(p) . 

Introducing dimensionless variables z = p/mq we see that  the integral reduces 
to 

f d4p . . . .  1-~IU~m' 
m q  

with I u"pa independent of mq. Thus we see that  heavy quark loops lead to an 
effective interaction between gluons and light Higgs particles which only depends 
on as and < H > and we understand the origin of the appearance of the field 
strength tensor. 
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1 I n t r o d u c t i o n  

In this lecture we discuss QCD sum rules which is a method engineered for the 
sake of having an approximate calculational scheme for strong coupling QCD 
and in particular to account for non-perturbat ive effects. The basis of the me- 
thod are certain ideas of the structure of the QCD vacuum and the knowledge of 
the short distance properties of QCD. The sum rule approach translates hadro- 
nic measurements into data  characterizing vacuum properties in order to gain 
predictive power to be able to answer questions concerning hadronic properties. 
The ideas we are referring to are on the one hand the concept of the vacuum 
being densely filled by fluctuations of the fundamental fields which may be cha- 
racterized globally by condensate values, the most important  of which are 

01-~a~c~"vl0 >; < 0lmq~ql0 > . < 

On the other hand we believe that  e.g. the simplicity of the interquark interaction 
at short distances extends to rather large separations and eventually changes its 
character in a comparatively small region, similar in spirit to the bag model. For 
this reason only a minimal extrapolation from the well understood perturbat ive 
regime into the theoretically unknown nonperturbative one has to be done and 
the errors contained in the method are quite controllable. On the basis of this 
picture the success of the sum rule method in reproducing qualitatively the 
regularities in the hadronic family in turn provides new insights into the structure 
of the QCD vacuum. Although the method is constructed in such a way that  
on the one hand it is as close as possible to first principles and on the other 
hand allows for readjustment in order to include new experimental as well as 
theoretical information (e.g. from lattice QCD or heavy quark experiments) it is 
not a systematic perturbative expansion like the s -expansion in QED. Therefore 
it can not be used iteratively in order to produce results of arbi t rary accuracy 
and rather it is intended to generate qualitative insights and results which are 
accurate to within 10-20%. 

" Lectures presented at the workshop "QCD and Hadron Structure" organised by the 
Graduiertenkolleg Erlangen-Regensburg, held on June 9th- l l th ,  1992 in Kloster 
Banz, Germany 



QCD Sum Rules 

e ÷ 

171 

° ° 

e e 
J 

Fl ~v 

Fig. 1. The polarization tensor in electron positron annihilation 

2 The Basic Idea (Pictorial Description) 

The fundamental step in the sum rule method is a systematic separation of the 
short distance properties which are well known from perturbat ive QCD from 
large distance properties which can not be calculated but  which may be parame- 
trized using experimental input by means of a few average vacuum expectation 
values. In order to demonstrate how this separation arises (for a more formal 

F i g .  2 .  Expansion of t h e  polarization tensor in the strong coupling constant 

derivation see appendix) we now want to consider the polarization tensor H~v 
shown in Fig. 1 

IIu~,(q ) = f < OIT [j~(x)j~(O)] I0 > e iqZ dx (1) 

obtained as vacuum expectat ion value of the t ime ordered product  of charmed 
currents 

£ ( x )  = 

which may be used for studying hadronic properties such as charmonium reso- 
nances. If we perform an expansion in the coupling constant a8 then we find the 
contributions shown in Fig. 2 where the fermion lines refer to c-quarks. In these 
diagrams, if the momentum q is small, we have heavy c-quarks propagating with 
the free fermion propagators [p2 + m~]-i  since they are propagating over typical 
distances of the order of 1~me for which a perturbative t reatment  is applicable, 
since it is still far below the confinement radius. Calculating only the coupling to 
the electromagnetic current, but  not considering further strong interactions is of 
course not sufficient for a prediction of properties of hadronic resonances, but a 
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perturbative calculation of the gluonic corrections using a free gluon propagator 
k -2 is inappropriate, as well. The reason is that within the loop momentum 
integration long wave lengths and in particular the "on-shell" gluon momentum 
k = 0 are contained. But due to confinement the gluon can not become on-shell 
and therefore using the perturbative propagator, we would make an essential er- 
ror in the physical description and it is clear that other contributions should also 
be considered. The physically correct treatment instead consists in a separation 

~ - " ~  ~ .".* ~ s  l -  

k2 

Fig. 3. The high momentum (k 2 > p: )  perturbative contribution to the polarization 
tensor 

f 
! \ I 

X 

Fig. 4. The low momentum non-perturbative contribution to the polarization tensor 
is dominated by coupling to gluon fluctuations in the vacuum 

of the small gluon momentum region from the large momentum region. In the 
k-plane this amounts to cutting out the central region and diagrammatically it 
means that we calculate the diagram perturbatively for high momenta down to 
some scale/~ which gives the result shown in Fig. 3. The result for the interaction 
with gluons of momenta smaller than # is determined by the diagrams shown in 
Fig. 4 showing that the dominant contribution arises from coupling to vacuum 
fluctuations and it leads to a #-dependent correction term of the form 

< /?a (:,a #v a s ~ / j v ~  >/~ q2 

m 4 FCm--~c) 
(2) 
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containing the non-perturbative gluonic vacuum condensate. To see how this 
type of contribution can be derived formally, see appendix. Thus a physically 
reasonable description is one where the coupling of the quarks to low momen- 
tum gluons is not dominated by perturbative gluons but by coupling to gluonic 
fluctuations already present in the vacuum. As stated in the introduction these 
fluctuations are then parametrized by condensate values. What is important is 
that < asG 2 > is numerically much bigger than p4 in Fig. 3. 

Note that the heavy quarks are for small q~ always far off-shell and therefore 
no non-perturbative correction of the fermion propagators have to be taken into 
account. In the case of light fermions, however, the situation is different and one 
encounters in addition to the gluon condensate also quark condensates. 

3 P r a g m a t i c  O p e r a t o r  P r o d u c t  E x p a n s i o n  

The theoretical tool which is almost ideally suited for the purpose of the sum 
rule method is the Wilson operator product expansion in which the time ordered 
product of currents is rewritten in the following way (using in the sequel the 
momentum space representation) 

II~v(q) = (q,q,, - q2 gr,, ) Z Cn(q, mc, p)On(p) (3) 

with coefficient functions C,  containing the short distance information,in par- 
ticular also the short distance singularities, and non-singular operators On. The 
separation of long and short distance effects is built into this expansion, but we 
want more and thus come to the pragmatic version of the OPE. We want the 
coefficient functions to be determined perturbatively (approximatively) and we 
want the expectation values of the operators < 0 ,  > to be determined entirely 
by non-perturbative effects. This is in fact essential for the method to work, since 
only if the expectation value of the operator is dominated by non-perturbative 
effects then the exact value of the artificial separation constant/~ becomes unim- 
portant, as will be seen below. Note that this requirement is responsible for the 
fact that no pragmatic OPE is possible in two-dimensional a-models beyond 
the leading 1/N approximation. Therefore such toy models are of no help in 
trying to understand what happens in QCD [1]. In the previous example of the 
polarization operator the pragmatic OPE gives the contributions of order 1 and 
(~s shown in Fig. 5a and 5b which are associated with the unit operator and 
the contribution 5c stemming from the coupling to the vacuum fluctuations as- 
sociated with the operator G ~ C. ~ ~v Since we want the pragmatic version of - - / ~ t s - -  

OPE to be approximately valid, we would like to eliminate the p-dependence 
in these expressions. For this purpose we note that due to the fact that p may 
be chosen large enough that all non-perturbative effects occur at k 2 ( #2 and 
at the same time p/mc <~ 1 (see Fig. 6) and that we know that the artificial p-  
dependence gets cancelled by perturbative contributions to < asG 2 >~ we can 
neglect the y-dependent contribution in the perturbative part (Fig. 5b). Since 
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X, 2¢ 

('1 <°'°' (a , )  0 a ,  1 -- ~ m~ > ' . F ( q ' , m c )  

Fig. 5. Result of the pragmatic operator product expansion: (a) Polarization tensor 
without corrections from strong interactions; (b) Perturbative correction to the polar- 
ization tensor; (c) non-perturbative correction due to coupling to gluon fluctuations in 
the vacuum 

on the other hand the condensate is adjusted by experimental input (it turns 
out that  (asG 2) >> #4 (Fig. 6) we can forget about the #-dependence entirely, 
besides logarithmic corrections in the non-perturbative contribution. The coef- 
ficient function F(q 2, me) is determined in perturbation theory (see appendix). 
In order for the pragmatic OPE to have a chance to be valid two important 

k2D(k 2) 
20 

IO 
~ 10 - 20 

L 
I I ' I " 1 ' t ' J " L I " I " I ' 

o 5oo k 2 
( Aoc. ) z 

Fig. 6. Qualitative behavior of the gluon propagator in QCD 

conditions have to be fulfilled1: 

(i) The transition from the perturbative to the non-perturbative regime must 
be abrupt. Then, taking into account only global vacuum properties may be 
sufficient. 

1 In this example there are only two such conditions. In general they may be other 
conditions, as well, if other operators have to be considered in the expansion. 
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(ii) #4 << <(~8G2> in order for the exact way of separating the regions of large 
and small momenta to be of no importance. 

In QCD both conditions are fulfilled which may be concluded from the success 
of the method. In addition one can easily show that the value of the gluon 
condensate is much bigger than what one would predict perturbatively using 
gaussian wave functionals. Consequently there must on the one hand exist a 
serious deviation from the perturbative value of the gluon 'propagator' D(k 2) 
and on the other hand this deviation must be restricted to rather small values 
of k 2 extending not far beyond A2QeD as may be concluded from the success of 
perturbative calculations. 

Therefore we expect D(k 2) 

[ D~,,(k) = D(k 2) g,~ kS ] (4) 

to have the qualitative behavior shown in Fig. 6 and in particular the required 
abrupt change from one regime to the other. Note that e.g. in two-dimensional 
a-models k2D(k 2) at k ~ 0 is only about two times bigger than it is at large 
momenta, confirming thus the impossibility of applying the pragmatic OPE [1]. 

4 T h e  F i d u c i a l  D o m a i n  

Following the approximate prescription outlined above which implies that per- 
turbation theory has to be put into the coefficient functions Cn and only non- 
perturbative effects into the operators 0,~, we find for the polarization tensor 
the result [2] 

H~v(q) = (q2g~v - q~qv) H(q 2) (5) 

SS(q2) = < > < s,3r, q ) . . . .  (8) 

If all terms in this series were known we possibly could perform the sum and 
determine the position of the poles and the residues of ll(q) and thus find the 
charmonium resonances. Obviously this is not the case and on the contrary it 
may even be not meaningful to extend the expansion far beyond a few orders, 
since it is an asymptotic expansion. Therefore the idea is to keep only the first 
terms containing only a few vacuum condensates which characterize average 
vacuum properties and try to go as close to the pole as possible. The expansion 
is then supposed to work in the so-called fiducial domain which is characterized 
in the following way: 

(i) One is able to stay sufficiently close to the lowest lying resonance pole, where 
the higher states should not contribute strongly 

(ii) One can stay sufficiently far away from the lowest lying pole so that only a 
few terms in the expansion and the corresponding condensates are needed. 
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One should be aware of the fact that  none of the ingredients of the sum rule 
method neither the pragmatic OPE nor the presence of a fiducial domain are 
obviously present in any theory. E.g. in two-dimensional a-models one can ex- 
plicitely show that  both are absent. In QCD one is often in a better position, 
but not always, and there exist exceptional cases especially in connection with 
states carrying vacuum quantum numbers and spatially large states (high spin 
states and radial excitations). 

In practice the lower bound in Q2 for the fiducial domain is simply determined 
by the requirement that  the terms in the expansion become successively smaller; 
the upper bound is determined by the requirement that  higher excited states, 
the contribution of which is estimated by semiclassical methods, still do not 
represent a dominant effect. 

The condensates which are usua]ly used for parametrizing the non-pertur- 
bative effects are the following ones [2] 

(i) < asG~,G '~ "" > determined from the mass and residue of the J /C-resonance 

(ii) < a]/2fabCG~VG~PG~ ~' > determined e.g. from the instanton vacuum 
(iii) < mq(lq > determined from the theory of chiral symmetry breaking according 

to Gell-Mann-Oakes-Renner and using PCAC [2], [3], Chap. 5.5 
(iv) < (la~'VG,~,q > is determined from sum rules for nucleons [4] 
(v) < ~lFq(IFq > with F = 1 ,7~,7~75, . . .  is calculated under the assumption of 

factorization [2]. 

Thus there are five numbers needed as input to the calculations which then 
allow us to determine masses, residues, magnetic moments, charge radii, etc. of 
all hadrons with J < 2 and without radial excitations. As already mentioned 
the method may fail because of the missing fiducial domain as is the case for 
0+--glueballs,  the ~'-meson, Goldstone bosons and radial excitations. 

5 A T e c h n i c a l  D e v i c e  - B o r e l i z a t i o n  

In practical applications of the sum rule method there is in many cases a technical 
device needed in addition in order to achieve a sufficient rapid convergence of 
the expansion. The device we refer to is borelization (it amounts to performing 
a Borel transformation) and it consists in applying the following operator BM2 
to the function under consideration which is H(q 2) in the case at hand [5] 

BM2 = lim (n--- 5 !  (7) 
n ---~ oo  

_ q 2  _+ oo  

with M 2 q2 - - f i = e d .  ( S )  
n 
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Application of this operator e.g. to inverse powers of q2 gives 

(1 )  k 2 ~ 

lim (n - 1)! -(~ - (9) 
• --+ O0 

_q2 __+ O0 

1 ( 1 ) k  ( 1 )  
( k - l ) !  M-2 + l i m  O . (10) 

Thus under the Borel transformation a function f(x) goes into a function ](A) 
with the property 

= E-k Z -k 
k! 

k k 

which obviously has better convergence properties. In the case at hand -1/q 2 
plays the role of the variable x and 1/M 2 that of A and we want to apply the bo- 
relization to dispersion relations involving II(q 2) (11) which are needed in order 
to be able to relate the theoretical expression to experimental measurements as 
it is discussed in the appendix. From the dispersion relation 

1 f ImlI(s)  (11) II(q 2) = subtr, const + - ds _ q2 
7r s + ie 

Co ln(-q 2) + C2 ~ < 02 > _ _ <  Ok > (12) q4 + " "  +Ck (q2)k 

we obtain after borelization (a simple calculation shows that the logarithm trans- 
forms into a constant) 

/I(M2) = -~rl f ds~_~_5imlI(s)e_s/M2 (13) 

Co + C2 < 02 > < Ok > (14) M-------- ~ -  +. . .  + Ck (k - I)!(M2) k 

where (13) follows from borelization of the expansion 

sk 
/~M2 S -1 q2 - --/~M2 E (q2)k+l (15) 

k 

k ~  (--1)k+ls  k 1 e_s/M2 (16) 
= - -  ~ -- M2 

Thus instead of suppressing large s values in the integration by 1/s we have 
achieved after borelization an exponential suppression. 
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6 A Q u a n t u m  Mechan ica l  E x a m p l e  

In order to provide you with a concrete idea about the fiducial domain, we now 
want to discuss a very simple example, a single particle bound in a harmonic 
oscillator potential  V(r)  = mw2r2/2. The object corresponding to the polariza- 
tion tensor is in this example the recurrence amplitude for the particle being at 
t ime tl = 0 at the origin and being detected at the origin again at t ime t2 = --iT. 
This is measured by 

S(r) = ~ IR.(0)I 2 e - E - T  (17) 
n:0,2,4,. . .  

with: S(T) = 47rG(x2 = 0, t2 = - i v ;  xl = 0, tl  = 0) . (18) 

Since the exact Greens function for the harmonic oscillator is known, we have 
an exact result for S(T) to compare with 

s ( , )  = 

The ground state energy (corresponding to the pole position in the polarization 
tensor) can be obtained from the limit r --+ CO 

E 0 =  ,-~lim [--~0--T ln(S(T))] = ~c~. 

However, we do not want to use the knowledge about the large T-behavior but 
instead assume that  we only know the small r expansion from some perturbative 
calculations (e.g. starting from the free particle Greens function) where a large 
number of states contributes. We therefore have to start  from the approximate 
result 

O l n ( S ( T ) ) = 3 [ l ~ w  + WT - -  + - -  q= • • ' ( W T )  2 2 (COT) 5 ] 
OT ~ 3 45 945 

It is of course not possible to extract  from the finite sum the correct large 
T behavior and therefore the correct ground state energy. However, there is a 
fiducial domain, where on the one hand not very many levels contribute and 
on the other hand the expansion does not yet blow up as it is shown in Fig. 7. 
Obviously it is still possible to find a reasonably good estimate for the ground 
state energy within the fiducial domain. In numbers this means that  we obtain 
from keeping two terms in the expansion as an estimate Eo = 2 ~ E o  ~ac~ which 

deviates by 15%, from four terms we get E0 = 1.06Eo~ac~, i.e. a 6% error and 
the estimates may even be improved by using a rough model for the higher lying 
levels. 

Keeping this simple example in mind, we come back now to the previous 
discussion of the polarization tensor, but discuss instead of charmed currents 
and the J /C- resonance  the slightly more complicated case of the p-resonance. 
In this case we find the result shown in Fig. 8 [2]. Again there is a fiducial 
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Fig. 7. Fiducial domain for the determination of the ground state energy in the har- 
monic oscillator 

domain 2 where the sum rule approach (including fermionic condensates of light 
quarks) reproduces quite well the p-meson resonance the contribution of which 
is obtained by approximating the polarization tensor by the pole term only. This 
gives rise to the following imaginary part  and transformed polarization tensor 

ImIIp-meson(s)  o¢ ~(s - m 2) =~ H ( M  z) 

and the corresponding result shown in Fig. 8. Outside of this fiducial domain 
the method fails for different reasons: In region I the failure is due to the incom- 
plete summation in the polarization tensor corresponding to the failure in the 
harmonic oscillator example at large values of WT, in region II more resonances 
than just the p become important  and the result may be improved by taking 
into account higher lying resonances in the form of a continuum contribution 
which sets in at s -- so and may be approximated by a perturbat ive calculation 
[2] 

f ~  ~_~ e -slM2 1 ds I m  II  p t  (s) . 
~T ,S sO 

As shown in Fig. 8, M can be chosen as small as the p-meson mass, but  smaller 
values are due not accessible to the finite expansion. At this value one is sensitive 
essentially only to this resonance and the nonperturbative corrections play only 
a miner role. 

2 Note that after the Borel transformation was applied the fiducial domain appears in 
the variable 1/M: and not in 1/q 2 anymore. 
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Fig. 8. Fiducial domain in the channel of the p-resonance. Regions I and II are ex- 
plained in the text. 

7 N o n - f a c t o r i z a b l e  A m p l i t u d e s  i n  W e a k  D e c a y s  

Since the sum rule method is by now already more than ten years old and is nicely 
described in reviews, we now want to turn  to a recent application which goes 
beyond a simple repetit ion of the more tradit ional  ideas mentioned previously. 
In this example we intend to demonst ra te  how the old ideas can be combined 
with new ones, in this case concerning the weak decay of B-mesons  [6]. 

b 

- 

d 

W ÷ , d 
I 

d 

Fig. 9. B-meson decay 

We want to consider the weak decay of b-quarks  which is described at low 
energies by the effective Hamil tonian 

Hw -~ ~22 ~cb Vdu [Cl Ol q- C202] (19) 
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with: ()1 = (c,F~b~)(djF~uj) (20) 

02 = (~jF"bi)(d,F,  uj) (21) 

with F ,  = 7~ (1 - 75) and Vbc, Vau elements of the Kobayashi-Maskawa matrix. 
The interaction takes place via the 'usual' operator 01 and an additional color- 
twisted operator O2 which has to be taken into account due to the possibility of 
hard gluon exchanges, which are not considered explicitely. 

Now let us consider the weak decay of B-mesons 

j~O _+ D + + r -  (bd--+ cd + dfi) . 

The contribution of the operator 01 in powers of 1~No (the leading one is drawn 
in Fig. 9) can be shown to be [7] 

< D+Tr-[OIIB ° > = <  7r-[dFUu[O >< D+[eF, bIB° > +0(~----~) 

without a first order 1~No correction. Although this matrix element nicely fac- 
torizes which may also be seen from the figure, the same is not true for the 
matrix element of the operator 02. The reason is that this operator not only 
contains a singlet-singlet coupling at 1~No level but it has a contribution from 
an octet-octet coupling, as well 

1 
02 = - ~  (e,r"b,) (djr.uj) + 2 (ejr"t~,bi) (dir,,t~juj) 

which follows from the well-known SU(N)-identity 

~ijdikt- 15il~jk = 2 ~ AiajA~/ . 
Q 

Although in the literature factorization is assumed also for this operator, the 
non-singlet contribution does not allow such a treatment. In addition the ex- 
perimental data seem to favor no 1~No corrections at all which means that in 
the operator 0z the factorized singlet-singlet part has to be cancelled by the 
non-factorizable octet-octet part. 

To understand the experimental result and to demonstrate that in fact the 
factorizable contribution is cancelled by the non-factorizable one, we consider 
the heavy quarks (c,b) as very heavy M~ --+ oo, Mb --+ oo, Mb -- M~ = const in 
order to simplify the kinematics. In this limit one finds for the factorizable and 
non-factorizable parts in the matrix element of 02 

< D+rr-lD~l/} ° >/actor~z,bte -- i ~ 2 M q o  (22) 
- 2 

zmalt "" " (23) < D+Tr-1021/} ° >,~on-I,~torizabl, ~" 4--~zl*'lqo 
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where rnaH controls the B, B* mass splitting as will be shown later. The ratio 
of the factorizable to the non-factorizable amplitude is then found to be 

< D+r-1021 ~° >,on-lactorizable 2 gcm~H 
< D+Tr-102]/~ ° >p, cto,.iz,,ble 47r2f~ 2 

-1  (24) 

and therefore the two contributions to the matrix element of O2 indeed cancel 
almost entirely in agreement with the experimental result. 

D + 

7, 

) 

C ¸ 

b 

q.)m 

• D*  

B 0 

Fig. 10. Matrix element A z 

In order to understand this result we now consider only the octet part in 02 
which is denoted 02 and instead of concentrating on the on mass-shell amplitude 
we rather focus on the following matrix element 

a. = f d4xe 'q~ < D+IT [02(O)fi(x)TlJ"/Sd(x)] 1/3 ° > 

which is shown in Fig. 10. For large (euclidian) values of q only small values of 
x contribute to the integral and therefore the matrix element can be rewritten 
in the form 

A ~ - 
2i qaqO 

16r2 q2 
<D+[geauo, ,Ga°"~Futab]B°>+O(~)  

where the OPE has been used to replace the time ordered product of light quark 
fields analogously to the discussion in the appendix. In the leading order in 1/q 2 
the dual of the gluon tensor appears which is physically clear due to the fact 
that without coupling to an external field the matrix element of 02 in a singlet 
state vanishes. 
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D ÷ D'* 

a 
C_.Z> 

Fig. 11. Saturation of the axial current by pions 

For the kinematics which was assumed (b,c-quarks infinitely heavy) we can 
simplify this expression further, since all contributions proportional to the velo- 
city of the heavy quark v are suppressed and we obtain (G ~v denotes the dual 
of the field strength tensor) 

a s < D + [ g ~ p ,  tab[~O > = qO < D + [ g ~ b T ~ / S t a b [ j g o  > (25) 

= - 2 M q  ° < "D+"[fm -. Bh["/} °'' > . (26) 

We see that  F ,  reduces to %,75 because of parity and simplifies further to 7i7 s 
due to the fact tha t  7o75 is off-diagonal and causes thus the appearance of a 
factor of v. Furthermore we can neglect the contributions with G j i 7  i since the 
corresponding matr ix  element must be proportional to the velocity, as well, as it 
is easily understood in the rest frame of the b-quark.  We thus obtain (26) if we 
make use of the fact that  the strong interaction is flavor blind such that  in the 
limit of very heavy quarks they can be represented by a universal operator  h and 
the corresponding states, e.g. [,,/}o,, > without distinguishing b and c-quarks 
anymore. The interaction which is left is nothing but  the magnetic coupling a B  
in an effective heavy quark theory represented by the operator  

a B  
H =  

2 M  

which is known experimentally from the B, B* mass splitting 

2 3 
m ~ g  = -- < S l h  ( a B )  h i S  > =  ~ ( M  2 .  - M ~ )  .~ 0 . 3 5 G e V  2 . 

Using this result we then find for A ~ 

A ~ = 2i . 2 -~maH 8~r~ 
(27) 
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which gives the result (24) quoted previously if the pion leg is amputated from 
A ~. This means we assume saturation of the axial current by the pion field 
(Fig. 11) and obtain the decay amplitude by eliminating the vertex ] .  and the 
pion propagator. Thus the result (27) has to be derided by i /q  2 to eliminate the 
propagator and by i f ,  rq ~ to cancel the unwanted vertex contribution in order to 
obtain the decay matrix element (23). 

A The Operator Product  Expansion 
for the Polarization Tensor 

This appendix, which was not part of the lectures, is intended to supplement 
the pictorial description of the sum rule method and in particular the pragmatic 
operator product expansion with the practical technical procedure [2], [5]. The 
aim is to show, how 

(i) fermionic condensates may arise in the pragmatic OPE 
(ii) gluon condensates arise 

(iii) how the diagrams in Fig. 5 are generated. 

Starting point is the time ordered product of currents in the polarization tensor 
which is decomposed using Wick's theorem in the form 

• c x -c 0 T [3,( )3~( )] = - T r  {< 0IT [c(0)~(x)] 10 > ~ < 0IT [c(x)~(0)] 10> "y~} 

+ :  e(x)%c(x)e(o).rvc(O): + :  e(x)-r. < 0IT [c(x)e(0)] 10 > -r~c(0): 

+ :  e(0)-rv <OlT[c(O)e(x)] 10> -r.c(x) : 

which is also used in the context of deep inelastic scattering [8]. This result is an 
identity independent of the nature of the state ]0 > if the normal ordering intro- 
duced refers to this particular state, as well. Usually we are used to dealing with 
the vacuum state of a noninteracting theory, and calculating matrix elements of 
the interacting fields e,c such as < 0IT [ci(x)ej(0)] 10 > gives not just the free 
fermion propagator but all perturbative radiative corrections as well. In the sum 
rule approach we, however, have in mind that the vacuum is already filled with 
fluctuations of soft gluons and therefore we do not want to identify the vacuum 
with that of the free theory, but we want to have soft gluons contained in it 
already. Thus [0 > should neither be viewed as the trivial vacuum nor as the full 
physical vacuum since it is assumed to be trivial with respect to the heavy fer- 
mion operators and non-trivial with respect to gluonic ones. Because of normal 
ordering with respect to a trivial fermionic vacuum, it is already obvious from 
the decomposition that fermionic condensates may arise if the normal ordered 
operators have non-vanishing expectation values in the true physical vacuum as 
it is the case for light fermions. Thus the appearance of fermionic condensates 
is already understood. 

In order to motivate the distinction further we want to start from the Lag- 
rangian of QCD and introduce a separation of the gluon field g~ = h ,  + az which 
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should be viewed as the corresponding separation into soft and hard gluons re- 
spectively which was discussed previously. Doing this we find the field strength 
tensor G~,~ expressed in terms of the field strength tensors H~,v and  A l . .  of the 
soft and hard gluons respectively and an interaction part  which is not of interest 
for the following discussion 

Ga ~ a . ~  = Ha r _ r . . ~ .  A a Aa.~ (28) ~ _  __.~__ _ _ . ~ _  + a .  - h . -coupl ing  terms 

__ H a  H a . v  - -  --.v-- + (Ouav - Ova . )  (O~' a v - OVa u) + interaction terms . 

The decomposition expresses the different t reatment  of the gauge field parts. 
While h~, is t reated as a known background field which eventually is parametrized 
by vacuum condensates, a ,  is t reated as usual in perturbat ion theory. The full 
QCD-Lagrangian then takes the form 

a a V 1 (O.a,, - O,,a~,) (O"a v - OVa ")  - ~ H ~ , , H  ~' (29) £ = ~(iT~D~, - m )  c - -~ 

+ g~'r~'a~,c + interaction terms (30) 

where D .  = 0 u - i g h .  is the covariant derivative with respect to the background 
field. The difference mentioned already before expresses itself on the level of the 
Lagrangian in the t reatment  of the parts in (29) as diagonalized whereas the 
parts in (30) are treated as interactions being not yet taken into account. Tha t  
we do not use covariant derivatives D~,av instead of O.av  is because we want to 
expand finally simultaneously for small a .  and for small H ~ .  As a result of this 
difference we find, neglecting the couplings to a .  for the moment,  the following 
fermion propagator  in the background field 

< 0IT [c(y)e(x)] I0 > = <  x] [7" (iO. + gh~. - r e ) I - '  [y > =  So(x ,  y) • 

Taking into account the coupling to the perturbat ive gluons, this propagator is 
modified in the usual way by addition of radiative corrections. 

Now we want to come back to our interest of performing an operator product 
expansion for the polarization tensor and to this extend we have to evaluate 
the background field propagator. We use again the Fock-Schwinger gauge (see 
appendix of [9]) and obtain 

10 

= < :~1 [1 - (7Vp~, - m )  -1 g v ° h o  + (7~'p,, - m )  -1  gTPho (7~p,, - rn)(3~) 

gT~'h~ . 7=...1 (7"P.  - m) -110 > • (33) 

Expressing the gauge potential by the field strength tensor and expanding around 
x = 0 which is possible for heavy quarks, we find up to order 9 the result 

So(z, 0) = s~(~)  - / d ~ z S ~ ( ~  - z ) g ~ h ~ S ~ ( z )  + . . .  (34) 

= S ] ( x )  - g H p v ( O ) / d 4 z S / ( x  - z )7~ 'xPSi (z )  + . . .  (35) 
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where S/  denotes the free fermion propagator without background field. Note 
also that  the latter is translational invaxiant wheras the former is not since the 
Fock-Schwinger gauge breaks translation invaxiance. 

If we finally insert the result for the background field propagator into the 
expression for the product  of time ordered currents we obtain one contribu- 
tion without gluonic field strength tensor which is just the perturbative result 
(Fig. 5a) and which should be corrected still by taking into account the pertur- 
bative gluons as well giving then rise to the contribution in Fig. 5b. Then there 
axe two terms containing one gluon tensor which vanish due to the trace ope- 
ration and finally there are three contributions with two gluonic tensors which 
exactly correspond to the diagrams in Fig. 4 and 5c. Thus we have shown how 
these terms arise, how they are related to the G:  contribution in the OPE and 
we have demonstrated how perturbative corrections arise. In addition we pointed 
out where light fermion condensates may enter which however is irrelevant for 
the discussion of heavy quaxkonia. 

B The Comparison of Theoretical 
and Experimental Results 

So far we have just shown the derivation of the polarization tensor within the sum 
rule approach. What  is still missing is the presentation of how we usually compare 
to experimental results which is actually done by using dispersion relations, as 
we mentioned earlier. In order to get rid of the unknown subtraction constant, 
we write it in the form 

ddq I/ ac(s)s 
2 H(q2) - (41raQc)2 ds (s - q2)~ (36) 

with the fine structure constant a, the c-quaxk charge Qc and the cross section 
for charm production in e+-e - -ann ih i l a t ion  sc(s). Since this cross section is 
measurable the right hand side of equation (36) may obviously be obtained from 
experiment. On the other hand it was already determined theoretically so that  
the comparison is straight forward. In practice, however, one usually compares 
moments Mn 

M ,  = ~.t //(q2) q2=o 

or performs in addition a Borel transformation [2]. 
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1 I n t r o d u c t i o n  

The Skyrme model is a field theory of mesons and baryons based on a non- 
linear chiral Lagrangian which only contains meson fields explicitely [1]. Baryons 
arise in this framework as soliton solutions. These solutions carry a topological 
charge, or winding number, the conservation of which explains baryon number 
conservation in a natural way. 

At first, the Skyrme model did not attract much attention because the idea 
of composing baryons out of bosonic fields seemed much less intuitive than in- 
troducing elementary baryon fields. Later came the success of the concept of 
quarks and antiquarks as elementary particles composing all forms of hadronic 
matter, which was corroborated by the systematics of the hadron spectrum as 
well as deep inelastic scattering experiments revealing the existence of a hadron 
substructure. 

The concept of quarks and antiquarks as fundamental fermion fields ulti- 
mately led to the formulation of Quantum Chromodynamics (QCD), thought 
to be the underlying theory describing strongly interacting matter. However, 
the connection between the quarks in QCD ("current quarks") and the original 
"constituent quarks" making up the hadrons in precursor models seems rather 
tenuous. The constituent quarks used in nonrelativistic quark models to calcu- 
late the hadron spectrum are at best rather complicated collective excitations 
of the underlying theory, and the successes of the nonrelativistic quark model in 
many respects merit the qualifier "surprising". 

On the other hand, it became apparent that there also exists a rather non- 
trivial connection of the Skyrme model to QCD in the context of the 1/Nc- 
expansion. Subsequent studies of the phenomenology of the model led to rough 
quantitative agreement with the properties of the low-lying baryon states obser- 
ved experimentally. Even though the Skyrme model suffers from all the limita- 
tions of an effective theory and its connection with QCD is not straightforward 

* Lectures presented at the workshop "QCD and Hadron Structure" organised by the 
Graduiertenkolleg Erlangen-Regensburg, held on June 9th-llth, 1992 in Kloster 
Banz, Germany 
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to establish, it is formulated as a quantum field theory and as such contains a 
priori more information than a more phenomenological approach like the nonre- 
lativistic quark model. Thus, the Skyrme model represents a point of view which 
may be able to complement the nonrelativistic quark model in many ways. 

The present account will first review large-Nc QCD and the connection of its 
Feynman graph expansion with the one of an interacting meson theory. Then the 
Skyrme model in its simplest (two flavour) form is formulated and the emergence 
of baryon solutions is exhibited. Baryon quantization is discussed. The model is 
generalized to three massless flavours and the substantial difficulties connected 
with the introduction of a strange quark mass are exhibited. It is shown how 
these difficulties can be addressed by the bound state approach to strangeness 
[2]. In conclusion, extensions of the model are speculated upon. 

2 Large-Nc QCD 

In the low-energy regime, the running coupling constant of QCD becomes large, 
thereby invalidating conventional perturbation theory. In search of a different 
expansion scheme, 't Hooft introduced a generalization of QCD to the gauge 
group S U ( N )  with arbitrary N [3]. The theory simplifies greatly in the limit of 

i i i 
D 
q 

J J J 

Fig. 1. Double line notation for gluon lines. 

infinite N because only planar Feynman diagrams contribute to leading order 
in N, as will be seen below. The realistic case of N -- 3 can subsequently be 
reached by perturbing in 1/N.  The Lagrangian is 

= ~a[i~l"(5'JO, - gA~)  - 5'Jm~]qJ: + ~ T r ( F , ~ F  "~) (1) £ 

where the A~ are traceless, anti-hermitian N × N-matrices and the field strength 
is 

F,~ = O,A~ - O~A, - g[A,,  A~] . (2) 

The colour indices (i,j) run from 1 to N, and the flavour index a from 1 to 
Nf. The classification of diagrams according to order in N follows from the 
observation that the quark fields have O(N)  components, whereas the gluon 
field has O(N2).  The gluon A ij can, for the purpose of colour-index counting, be 
roughly thought of as a quark-antiquark pair qi~j, which graphically amounts 
to introducing the "double-line notation ''1 (Fig. 1). This notation serves as a 

1 This identification is not meant to go any further than to give a convenient repre- 
sentation of the fact that the gluons are in the adjoint representation of SU(N). 
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J g g J J J 

j 

Fig. 2. Examples of Feynman diagrams in double line notation 

convenient bookkeeping device when determining the order in N of a Feynman 
graph. E.g. in the one-loop corrections to the gluon propagator shown in Fig. 2 
the gluon loop insertion contributes a factor g2N, since the index k runs over 
N values, whereas the contribution of the quark loop insertion merely is of 
order g2. In order to achieve a smooth limit as N grows to infinity, the coupling 
constant has to be scaled down such that g2N --+ const. Otherwise, adding 
gluon loops introduces ever higher powers in N, which makes the theory diverge 
uncontrollably. Internal quark loops are thus suppressed by a power in N. 

J O J  " N 

g 

J - g 2 N 2 ~ N 

Fig. 3. N-dependencies of Feynman diagrams. 

Next, one may consider the two-point function (J(x)J(y)) of quark bilinears 
J such as qq, q"h,q,-q"/5"/uq, etc. The contributions of lowest order in the inter- 
action can be represented in the following way, where the leading dependence 
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on N can be easily read off, taking into account that each quark loop in the 
double line notation contributes a factor N due to summation over the colour 
index (see Fig. 3). One can convince oneself that all planar graphs are of order 

J ~ J  ~ N  

Fig. 4. N-dependencies of planar diagrams. 

N, since each additional gluon line on the one hand induces a factor g2 from 
the vertices, and on the other hand divides a loop into two, thus contributing a 
factor N (Fig. 4). Non-planar graphs, on the contrary, are suppressed by at least 
two powers in N, as can be seen in the following example, which in the double- 
line notation consists of only one quark loop, but possesses four vertices (Fig. 5). 
Thus, to determine the leading behaviour of the two point function in the large- 

Fig. 5. N-dependencies of non-planar diagrams. 

N limit, one needs to sum all planar graphs with only one quark-antiquark pair 
present at every point in time (as was mentioned above, additional quark loop 
insertions are also suppressed, by a factor N). This sum of planar graphs can be 
interpreted as creation, propagation, and annihilation of a meson. Therefore, to 
leading order in N, the two point function has only single-meson poles 

1 
( J ( k ) J ( - k ) )  ~- ~ I(OIJ(k)In)l 2 k2 _ m---~ "" N . (3) 

It follows that (OIJIn I ~ v/-N, and therefore the meson decay constants are of 
order O(v/-N). Note that this simply stems from the fact that, when creating or 
annihilating a meson, one counts O(N)  possible initial and final qq pairs which 
differ only by the colours of their constituents; it does not mean that the coupling 
constant of the weak interaction becomes large. Indeed, in practice, one would 
rescale the effective meson field by a factor ~ to arrive at a more appropriate 
scaling behaviour for the decay constants. 

Next, consider three-point functions of J. A typical planar contribution is 
shown in Fig. 6. In meson language, this graph amounts to creation of a meson, 
decay into two mesons, and subsequent annihilation of the two mesons. It is thus 
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~ N 

Fig. 6. N-dependencies of three-point functions. 

proportional t o  f393, where f is the meson decay constant and g3 is the three- 
meson coupling constant (Fig. 7). Since the whole graph is O(N), and f --- x /~ ,  

f 

f / 

Fig. 7. Three-meson vertex. 

the coupling constant behaves as g3 ~" 1/V/-~- Similarly, one can convince oneself 
that  the four-meson coupling behaves as g4 ~ 1IN. In general, 

g2+~ "~ N -n/2 (4) 

Thus, mesons are free in the limit N --+ oo. In N = cx~ QCD, there is an infinite 
tower of stable mesons. 

Furthermore, there are graphs with intermediate pure glue states (glueballs), 
which are suppressed (Fig. 8). This large-N argument seems to be the only simple 

1 

Fig. 8. N-dependence of graphs with intermediate glueballs. 

way to explain the OZI-rule (suppression of intermediate pure glue states) which 
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approximately holds in nature. In the meson language, this behaviour amounts 
to weak coupling of mesons to glueballs (Fig. 9) where the spiral line denotes a 

f %  

1_ , f f 

Fig. 9. Meson-Glueball coupling. 

glueball state. 
If one treats the theory beyond the leading order in N, one has to include 

graphs of increasing topological complexity. On the one hand, there are graphs 
with quark loop insertions (Fig. 10), i.e. quark-antiquark sea fluctuations, which 
in the meson language amount  to sums over meson loops. On the other hand, 

1 1 

Fig. 10. Suppressed graphs with quark loop insertions. 

there are non-planar gluon configurations which can be visualized as a planar 
meson with a gluon handle (Fig. 11). All new types of graphs can be translated 

v 

1 1 

4-~ 4N 

Fig. 11. Suppressed non-planar configurations. 

into the language of mesons and glueballs. In this sense, QCD with a finite 
number of colours is a field theory of interacting mesons and glueballs. 

This, however, immediately poses the question of how baryons could arise in 
such a picture. For the following argument, the number of flavours is assumed to 
be one. When N -- 3, there does not seem to be a big difference between mesons 
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and baryons: Meson wave functions are constructed out of q'~', baryon wave 
functions involve eijkqiqJq k. For large N, however, the generalizations of these 
expressions exhibit a fundamental difference: Mesons still consist of a quark- 
antiquark pair, but baryons now must contain N quarks in order to be able to 
antisymmetrize N colour indices. Thus, meson masses are of O(1), whereas the 
baryon mass is 

N ( N  - 1) (5) 
MB "~ Nmq + NTq + Vp,~r 2 

where Tq is the quark kinetic energy and Vpai,. the interaction energy between a 
pair of quarks (12). Inspection of the graph leads to the conclusion that Vv~i~ is 

Fig. 12. Quark-quark interaction. 

of order O(1/N). As a consequence, baryons in the limit N --+ e¢ have a mass 
of order N and therefore do not appear in the 1/N-expansion. For instance, the 
creation of a baryon-antibaryon pair is a nonperturbative process which cannot 
be simply described in terms of Feynman diagrams. 

Baryons are best thought of in terms of a Hartree-Fock expansion [4]. If only 
two-body forces between quarks are assumed, then each quark feels a force of 
order O(1), composed of the forces due to the N - 1 other quarks, each of order 
O(1/N). For large N, then, a mean field approximation should be very good. In 
the non-relativistic Hartree-Fock ground state, each quark is in the same spatial 
wave function, which could be determined if the quark-quark interaction were 
known exactly. However, even without detailed knowledge, it is possible to derive 
the leading-order behaviour of many baryon properties. Whereas baryon masses 
are of order O(N) ,-. O(1/g2), sizes and cross-sections are of order O(1), and 
mass-splittings between low-lying baryons are of order O(1/N) ~ O(g2). This is 
the typical behaviour of soliton solutions (such as magnetic monopoles), which in 
the weak-coupling limit become heavy, rigid objects, which can be treated semi- 
classically. These considerations led to a revival of Skyrme's model [1] [5], who 
long before had already suggested the possibility of viewing baryons as soliton 
solutions of mesonic field theories. 
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3 The Two-Flavour Skyrme Model 

It  is extremely difficult to rewrite QCD in terms of a theory of infinitely many  
interacting mesons and glueballs. As a first approximation,  one considers a world 
with two massless fiavours and truncates to the lightest (massless) mesons, the 
pions. This, the simplest form of the Skyrme model, can be used to test the 
notion tha t  the lowest-lying baryons can be interpreted as soliton solutions of a 
mesonic Lagrangian. The chiral pion Lagrangian is 2 

L :  Tr(O.VO.Vt)+ 3@TrEO.UVt,O VV*12 
where U is an element of SU(2): 

( 2i'rTr ~ 
V ( x , t ) = e x p ~  h ] (7) 

and ,r is the pion field. The flavour t ransformation properties of U can be derived 
via the observation tha t  

~ ( s )  

1 + 75 1 - 75 
qL -- - - q  , qR -- - - q  (9) 

2 2 

Under S U ( 2 ) L  and SU(2)R, respectively, 

aLe, -+ A~qL~ (10) 

(11) 

and therefore, under SU(2) x SU(2) chiral rotations, 

U ~ A U B  -1 • (12) 

In the vacuum (meaning here, the classical solution of lowest energy), U = 1, 
and thus SU(2) x SU(2) is spontaneously broken down to the diagonal (A = B) 
S U ( 2 ) v  subgroup, i.e., the isospin. If U is expanded in pion fluctuations near 
U = I ,  

2 i t .  ~r 
U = 1 + ~ + . . .  (13) 

and the N-dependences f~ ,~ x /~ ,  1/e --, ~ are assigned, then the pion inter- 
action terms are consistent with the large-N rule g2+,~ ~ N- '~ /2 .  

2 This is a similar Lagrangian as the one used in chiral perturbation theory [6]. In the 
simplest form of chiral perturbation theory, one starts with the first term of (6) and 
adds mass terms, which are then treated perturbatively. In the Skyrme model, the 
emphasis is different. In order to be able to study the baryon sector, it is crucial 
to include the second term in the chiral Lagrangian (6), without which the classical 
soliton solution would collapse to zero size [7]. Mass terms are introduced additionally 
at a later stage of the treatment. 

where 
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In addition to small fluctuations around U = 1, which are interpreted as 
pions, the model has static solutions which are stable for topological reasons, 
with U taking values all over SU(2). This can be seen as follows: One can 
parametrize the SU(2) field as 

U = uo + i u .  r . (14) 

Unitari ty of U gives the constraint u 2 + u 2 = 1, and therefore the SU(2) group 
manifold possesses the topology of a 3-sphere S 3. Now, if one considers static 
configurations where U --+ 1 sufficiently rapidly as r --+ oo, then all points with 
r --+ oo can be identified into one point which is mapped into U = 1. This stands 
in analogy to the situation in complex function theory, where the complex plane, 
together with the point at infinity, can be identified with the Riemann sphere. 
Thus, instead of maps from R 3 to $3(SU(2)), the problem is reduced to maps 
from S3(space) to $3(SU(2)). These maps fall into homotopy classes labeled by 
an integer winding number 

B _ 24~r 21 f daxea~Tr(O~uutoouuto~uu t) . (15) 

The winding number is invariant under any smooth deformation of U and there- 
fore is conserved in physical processes. This provides the motivation for Skyrme's 
identification of the winding number with the baryon number. One can further 
define the baryon number current 

B " -  2~e""~"T~(O~,UUt O~uut o.~uu t) (16) 

and check that  O~,B" = 0 is satisfied identically, without use of the equations of 
motion. This is another way to see that  B is conserved in smooth evolutions of 
U. 

The simplest non-trivial configuration is a one-to-one map from space to 
SU(2) with B = 1. Such a solution can be constructed via the hedgehog ansatz 

U0(x) = exp(iF(x)-r. ~) = cos F(x) + i'r. ~ sin F(x) (17) 

with F(0) = rr and F(x) --+ 0 as x -+ cx~. If F(x) is monotonic, this is a one-to- 
one map, with the origin mapped into the south pole of SU(2), i.e. Uo(0) = - 1 ,  
and the point at infinity mapped into the north pole, U0(c~) = 1. One can check 
by straightforward calculation that  the winding number satisfies 

B = --Ir2 f0 ~ F '  sin 2 Fdx = 1 . (18) 

A special property of U0 is that ,  for arbi t rary F(x), it possesses a symmetry 
under combined spatial and isospin rotations. If one denotes the operators of 
spatial and isospin rotations by L and I, respectively, then Uo satisfies 

L Z  J 
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The classical solution within the B = 1 sector is found by minimizing the soliton 
mass with respect to the radial function F 

~o ~ [~(dF~2 lsin2F ( 2  sin2F ( d F ) 2 ) ]  (20) 
M = 4rf~e r2dr \ ~r ] + 4 r ---5--- 1+ r2 +4 ~r 

where, for convenience, x has been replaced by ef,~r. 
Next, quantum excitations of the classical soliton solution must be conside- 

red. Because of isospin invariance, if Uo is a solution, so is AUoA -1. Thus, the 
lowest-lying excitations are slow rigid rotations, A -+ A(t). A is now regarded 
as the quantum mechanical variable, a collective coordinate. If 

U(r, t) = A(t)Uo (r)A -1 (t) (21) 

is substituted into the action, one obtains the collective coordinate Lagrangian, 

L = - M  + flTr(OoAOoA -1) (22) 

where the soliton moment of inertia Y2 is 

3e3f~ 27r [ 1 + 4  ((F')2 + ~ ] ]  . (23) f2 - f r2dr sin 2 F sin 2 F~  

When quantizing this Lagrangian, it is convenient to parametrize 

A = a o + i a . ~ "  where a 2 + a  2 = 1 .  (24) 

Then the Lagrangian becomes 

3 

L --- - M  + 2n  E ( a , )  2 (25) 
i = 0  

and the Hamiltonian takes the form 

1 
g = M + ~-~ E / / ~  (26) 

i 

with the conjugate momentum Hi = 4Y2di. Canonical quantization is achieved 
via II~ --+ -iO/Oa~, and thus, 

1 2 (27) H = M - - ~ V  

where V 2 is the Laplacian on the 3-sphere ~ a 2 = 1. 
One would like to construct baryon wave functions of definite isospin and 

angular momentum. The generators of spatial rotations and isospin rotations 
are classically 

dA Jk = ~Tr(rk A-I"~ ) 

dA-1 

(28) 

(29) 
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which upon quantization becomes 

gk=  ak -ao k 

One can check tha t  
j2  = I  2 = _ _ t V 2  

4 
and therefore the Hamil tonian becomes 

1 2 H=M+ J . 

All wave functions satisfy the I = J rule. 

(30) 

(31) 

(32) 

(33) 

and so on. The quan tum numbers of nucleons and deltas are thus successfully 
reproduced. Presumably  the states with higher I and J are artefacts of the 
rigid rota tor  approximation,  since for them the rotat ional  energy approaches 
the energy of the static soliton. The masses of nucleons and deltas are 

1 3 1 15 
M N  = M + 2--~" 4 ' M a  = M + 2--~" -4- (39) 

3 One can easily check that all linear functions of the ai are automatically eigenfunc- 
tions of 12 and j2. 

are given by 

(Alp ~) = 1/~ (31 + ia2) (35) 

(Al,  = (ao + i ,3) (36) 
(AIA++, sz = 3/2) = v ~ / r  (at + i32) 3 (37) 

(AIA +, sz = 1/2) = -v"2/Tr (a, + ia2)[1 - 3(ao 2 + a~)] (38) 

Since A and - A  give the same matr ix  U, as can be inferred from (21), there 
are two ways to quantize the soliton. One can choose between ¢(A) = ¢ ( - A )  
and ¢(A) = - ¢ ( - A ) .  Consider as an example the wave functions 3 

¢(A)  : (a0 + ial)  l • (34) 

One can check tha t  they are eigenfunctions of spin and isospin with I = J = l /2.  
If one now chooses ¢(A)  = ¢ ( - A ) ,  then l must  be even, and the soliton is thus a 
boson. Conversely, if ¢(A) = - ¢ ( - A ) ,  then l is odd and the soliton is a fermion. 

In the two flavour case there is therefore a choice, and in the following the 
fermion option will be adopted. In the three flavour case, this choice will no 
longer exist, and the soliton will be seen to be a fermion for N odd and a boson 
for N even. 

Once the two-flavour soliton is chosen to be a fermion, the allowed quantum 
numbers are I -- J = 1 / 2 , 3 / 2 , . . . .  The I = J = 1/2 states are identified with 
the nucleons, and the I = J = 3/2 states with the deltas. The wave functions 
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where 

M = 3 6 . 5 ] ~ e  ' J 2 = 5 0 . 9 3 : ~  . (40) 

Fit t ing the nucleon and delta masses, one arrives at ],~ = 129MeV and e = 5.45, 
which can be extracted from r - r scattering. This is about 30% off the expe- 
rimental values. In this fit, M(5 /2)  = 1730MeV, i.e. Erot  > M, and therefore 
the semiclassical t reatment  is inapplicable because deformations of the soliton 
due to rotations and vibrations become dominant. In an exact t reatment ,  these 
states are expected to become unstable due to their rotation. Higher N admit 
semiclassical t reatment  of more states, roughly up to I = J ~ O ( N ) .  

One may now compare the phenomenology of the Skyrme model with the one 
obtained from a large-N nonrelativistic quark model in its simplest form, with 
essentially no dynamics. In Hartree-Fock approximation, low-lying baryons have 
all quarks in the same spatial orbital. Therefore, the spin-flavour wave function 
must also be totally symmetric (since the colour wave function, being a singlet, 
is totally antisymmetric).  This constrains the spin and flavour Young tableaux, 
which are identical, to the form shown in Fig. 13 where the total  number of 

   .BxD[J 
I = J =  1 / 2  I = J = 3 / 2  I = J = 5 / 2  

Fig. 13. Young tableaux for the spin- f lavor  wave function.  

boxes has to equal N. This corresponds to the systematics found in the Skyrme 
model. Furthermore, if one assumes a spin-dependent pair interaction between 
the quarks, 

6 H  = ;~ ~ -~3 ,3 j  = -~ j 2 _  N (41) 
i<j 

then the energy takes the form 

2 (42) H = M + ~ J  

as in the Skyrme model. Thus these two very different concepts of the baryon 
lead to very similar predictions. Because of the dynamical nature of the Skyrme 
model, however, one can extract  a large amount of further information from 
it than from the quark model. Results are shown in table 1 where p denotes 
magnetic moments and g coupling constants. 
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Table  1. Results from the two flavour Skyrme model 

rms (I=O) 
magnetic 
rms (I=0) 
/Jr 

get 
gwNN 

g~NA 

Prediction Experiment 
0.59 fm 
0.92 fm 

1.87 
-1.31 
1.43 
0.61 
8.9 
13.2 

0.72 fm 
0.81 fm 

2.79 
-1.91 
1.46 
1.23 
13.5 
20.3 

4 The Three-Flavour Skyrme Model 

In view of the encouraging success of the two-flavour Skyrme model in describing 
nucleons and deltas, it seems natural  to extend the model to include strange 
particles. The s tandard procedure would be to s tar t  with three massless flavours 
and then a t t empt  per turbat ion theory in the quark masses. The discussion will 
show tha t  mass per turbat ion theory fails, and alternative t rea tments  of finite 
strange quark mass will be elaborated upon in the sequel. 

4.1 Mass less  Fermions  

The Skyrme model with three massless flavours differs from the two-flavour case 
in some impor tan t  ways. A naive generalization of the lat ter  would be 

£ = ]~---~6Tr(O~,UO~U*)+ 3~-~TrtO~,uut,ovUUtl2 (43) 

where U now is an element of SU(3): 

( 2iA~--~-Ma ~ (44) 
U = exp \ f~ ] 

and the components  of M are the pion field, M ~ = / / a  for a = 1, 2, 3, the kaon 
field, M ~ = K a for a = 4, 5, 6, 7, and the eta, M ~ = rl for a = 8. Unfortunately, 
this Lagrangian possesses a symmet ry  which is not present in QCD, namely 
separate  invariance under "naive par i ty"  x -+ - x ,  t ~ t and under U -~ U t (or 
equivalently, M a -~ - M * ) ,  which is an operation which counts the number  of 
Goldstone bosons modulo 2. In QCD, these symmetr ies  are separately broken in 
processes like 

K + K  - ~ 7r+Tr-Tr ° (45) 

where an even number  of Goldstone bosons decays into an odd number.  QCD is 
only invariant under the combination of the two transformations.  I t  is not hard 
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to specify the correction to the equation of motion which allows processes such 
as (45) 

O~, (~. f~utovu) + . . . +  Ae~ '~u to~ ,U. . .u to~u=o.  (46) 

However, the term in the action, called the Wess-Zumino term, from which such 
a modification of the equation of motion follows, is very subtle and cannot be 
written in local form, as a four-dimensional integral 

Swz  - 24-~n 2 d~xe"~'YTr(UtO, U...UtO~U) (47) 

where the integral extends over a five-dimensional surface Q with space-time 
as its boundary and U has been smoothly continued into the interior of the 
surface. One feature of this term which is crucial for the description of baryons 
as solitons is the fact that the coefficient n must be an integer. This results from 
an ambiguity in the definition of the 5-surface over which the integral extends 
(see Fig. 14). The difference between these definitions is the integral over the 

Fig. 14. Boundaries Q, Q' for the integration in the Wess-Zumino term 

5-sphere formed by the union of Q and Q': 

in fQ dSxe"~"O~Tr(UtO, u . . .  UtO~U) (48) zlSw z - 2 ~-6- 2 uO' 

which can be shown to be a multiple of 2~r if n is an integer. Only then does 
this difference not introduce any ambiguity in quantum mechanical amplitudes, 
since path integrals only involve exp(iSwz). 

In order to specify which value of n is compatible with QCD, one can couple 
the chiral theory to electromagnetism [8]. The Wess-Zumino term introduces an 
effective interaction describing the decay ~r ° -~ ~t~t: 

n e  2 

~int- 48r2----~rc°d'~'ZF~,~F~o (49) 

which gives agreement with the amplitude calculated from the triangle diagram 
if one chooses n = N, the number of colours. Similarly, one can show that 
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the VAAA anomaly is reproduced correctly if n = N. The Wess-Zumino term 
incorporates all the effects of QCD anomalies in low-energy processes involving 
photons and Goldstone bosons 4. 

As mentioned above, the Wess-Zumino term is crucial for the interpretation 
of baryons as solitons in the SU(3) Skyrme model. The soliton solution has the 
same form as in the two-flavour case, since it is the SU(2) subgroup of SU(3) 
which possesses the topology of a 3-sphere S 3 and which thus allows for non- 
trivial mappings S3(space) --+ $3(SU(2)): 

Uo(r) = exp i F ( r ) ~ A , ~ ,  . (50) 
{----1 

If one considers the change of phase in the wave function of the soliton generated 
by S w z  as it is rotated adiabatically through the angle 2r ,  i.e. 

V(r ,T)  = exp(i~rA3/2)Uo(r)exp(-i1"%3/2) , 0 < T < 21r (51) 

then one finds S w z  = 7rN, which corresponds to a phase factor of ( - 1 )  N. This 
means that  the soliton is a fermion for odd N and a boson for even N,  in agree- 
ment with QCD. To do this calculation, one has to find a smooth extension of 
U(r,  t) into the interior of the manifold D2 x S a, whose boundary S 1 × S 3 is space- 
time, in order to be able to evaluate the Wess-Zumino term [8]. Furthermore, 
the Wess-Zumino term imposes strong constraints on the SU(3)I  x SU(2)spin 
quantum numbers of the baryons. This results after collective coordinate quan- 
tization 

U(r,  t) = A(t)Uo(r)A -1 (t) (52) 

which gives the effective Lagrangian for A(t): 

3 7 

2 - i (53) 
2 j = l  a----4 

where the moments of inertia Y2 and • are functionals of the profile function 
F( r ) .  Numerically one has 

106 39 
- ~ = (54) 

/ . e  3 ' 3 • 

Convenient coordinates are given by 

8 
i 

= Z (55) 
{=1 

4 This was the original motivation for the Wess-Zumino action: to introduce the effects 
of the anomaly into the Lagrangian, at the classical level. 
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which leaves the Lagrangian 

7 N . ~2 
=  (a9 +  (ao)2 + (56) 

j = l  a----4 

If the canonical momenta to the a~ are denoted by r~, then the Hamiltonian 
reads 

3 7 

1 2 1 Z ~ (57) H = -~-~ Z Tr j + ~ ~ 
j----1 a = 4  

and there is a constraint on the wave functions originating from the Wess-Zumino 
term, because as only appears linearly in the Lagrangian: 

7rsO(A) = 2 - ~ ( A )  . (58) 

Since the 7r~ generate right rotations on A, this constraint implies 

~(Ae  ~'~Y) -= e~ag/3k~(A) (59) 

where Y = As/v/-3 is the normalized hypercharge. In order to implement the 
constraint on the wave function, one can write it in the general form 

g'(A) = <I, 13, Y[D (p'q) (A)II', I~, Y'> . (60) 

All the irreducible representations of SU(3) can be characterized by a pair of 
integers p and q [9]. The elements of the (p, q) representation form a traceless 
tensor with p upper and q lower indices symmetric in the upper and lower indices 
separately. Thus every SU(3) group element A can be represented by a N(p,q) × 
N(p,q) matrix D (p,q) (A) acting on the states of the (p, q) representation, where 
N(r,q ) is the dimension of the representation. Thus the form (60) denotes a 
complete set of functions on the SU(3) manifold, where the states are labelled 
by their isospin I, its third component 13, and the hypercharge Y. Because of 
the group property 

D (p'q) (AB) = n (p'q) (A)D (p'q) (B) (61) 

the constraint (59) implies that  the allowed wave functions must have the right 
hypercharge index Y' = N/3,  and therefore the representation (p, q) must con- 
tain a state with hypercharge N/3: 

(A) = (I, 13, Y In (p'q) (A)[I', I~, N/3) . (62) 

Now the SU(3)! × SU(2)sp~, quantum numbers of the wave functions may be 
derived. Under SU(3)f,  U --+ F U F  -1, which reduces to A ~ F A  for the rigid 
rotator ansatz (52), and therefore the wave functions transform as 

(I, 13, YID(P,q)(A)II', I~, Y/3)  ~ (63) 

(I, Ia, Y[D (p'q) ( F)lI" ,  I~', Y")  ( I", I~', Y"[D (p'q) ( A )II', /~, Y /3 )  
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Thus, the left set of indices (I,/3, Y) are the flavour indices which transform in 
the (p, q) representation of SU(3). 

Similarly, under rotations, Uo --+ R-1UoR, where R is an SU(2)sWn matrix, 
and therefore A -~ A R  -1. Hence, the right indices (I', I~) of the wave function 
transform under rotations. The angular momentum carried by the wave function 
is thus (J, Ja) = ( I ' , - I~ ) .  The constraint may now be phrased in the following 
way: An allowed SU(3)I x SU(2)sp, n representation must contain a state with 
Y = N / 3  and I = J. The smallest representations for N -- 3 are the octet 
[(1, 1); J -- 1/2], containing the nucleons, and the decuplet [(3, 0); J -- 3/2], 
containing the deltas. In addition to the correct description of the quantum 
numbers of the lowest-lying observed baryons, the Skyrme model contains an 
infinite tower of exotic multiplets, which again is presumably an artefact of the 
rigid rotator approximation. A more complete treatment, as exhibited further 
below, explicitely shows that some of them are unstable. 

It is useful to again compare with the large-N quark model. Just as in the 
two-flavour case, the spin and flavour parts of the Hartree-Fock wave function 
must have identical Young tableaux with N boxes each (Fig. 15) where (a) cor- 

(a) 

B o B3.--U B..-B 
( b )  ( c )  

Fig. 15. Young tableaux in the N-flavor model. 

mmmm 

responds to the large-N analogue of the octet, (b) of the decuplet, etc. Each of 
these representations satisfies the Skyrme model constraint. Again, the quan- 
tum numbers of the tow-lying states of the Skyrme model agree with those of 
the quark model. However, the Skyrme model contains other representations 
which cannot be constructed out of quarks alone. These states have higher mas- 
ses and considerations further below will show that rigid rotator methods are 
not trustworthy in describing these exotic baryons. 

Next, the mass splittings between the multiplets must be considered. Acting 
on the allowed wave functions, the Hamiltonian (57) can be simplified to 

1 ( C ( P , q ) - J ( J  + 1 ) - N 2 / 1 2 )  (64) M (p'q) = J ( J  + 1) + 

because for i = 1, 2, 3, Ir~ = J, and furthermore, 

S 

Z 7r2gAP'q)(A) = C(P'q)~ (p'q) (A) (65) 
i=1  

where C (p,q) is the value of the (quadratic) Casimir operator in the (p, q) repre- 
sentation. If N = 3, then the relevant SU(3)! multiplets are the octet, for which 
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C (1'1) - 3, and the decuplet,  for which C (3,°) = 6. Therefore, for N = 3, the two 
lowest multiplets have the masses 

3 3 (66) M 0'1) = Me, + ~-~ + 4--# 

15 3 (67) 
M (a'°) = Me, + ~ + 4--# " 

Just as in the two-flavour case, the mass splitting between the two lowest mul- 
tiplets is AM = 3/2/2 -,~ I/N. More generally, one can show that the mass 
spectrum has the form 

N (68) M = Mc~ + J ( J  + l )  + 4-~ " 

This again agrees with the form found in the large-N quark model with 3 , 3 j  pair 
interactions (see the section on the two-flavour case). Thus for three massless 
flavours, the Skyrme model is a success. 

4.2 Mass  Per turbat ion  T h e o r y  

In order to t reat  finite strange quark mass, one must  introduce into the Lagran- 
gian a mass t e rm of the form [6] 

£m- mK_I~ O0 (U+U*-2) (69) 
8 O0 

which explicitely breaks the SU(3) symmetry.  In the effective Lagrangian for .4, 

this induces a t e rm 

/ o o o / A  to  1 o / A -1 (70) 
~ m -  ~ \ o o l  I \ 0 0 o 1  

where cr ,~ 1 0 7 / f , ~ e  3. In the Gel l -Mann-Oakes-Renner  t rea tment  of meson mas- 
ses, first order per turba t ion  theory in the quark masses works quite well even 
in the three-flavour case. Using the baryon octet  wave functions to a t t empt  a 
similar t rea tment  in the f ramework of the Skyrme model, one finds 

3 1 
m N = rr~ -- "~'6 X m A = m - -1-~ x (71) 

1 2 
m ~  = rn + ~-~z m -  = rn + ~-6x (72) 

where m = M (1,1) + x  and x = m 2 K a / 3 .  Even the splittings between these masses 
are in bad disagreement with nature. The observed values are 

r n A -  mN = 176MeV m E -  m A  = 78MeV 2 ( r n ~ -  m ~ )  = 250MeV (73) 
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whereas the Skyrme model gives equal values for the three quantities. 
Furthermore, one can extract the different flavour contents 

gs ~ ~ 0 ( v  + v t - 2) (74) 
0 

f u  ~ Tr 0 (U + g t - 2) (75) 
0 

da ~ ~ 1 ( v  + v t  _ 2) (76) 
0 

and arrives at [10] 

(~s)N 7 (~S)A 9 (77) 
(flu +dd + 8 8 ) N  - -  30 (fu +dd + gS)A 30 

Thus, a very high strangeness content of the nucleon results, which would imply 
that the sea is not suppressed. However, this prediction is not trustworthy, as 
the calculation of the mass splittings already indicates. It seems that first order 
perturbation theory in the masses is not sufficient and the effect of the strange 
quark mass on the Skyrmion wave function must be included. 

In the following, N will not be fixed, but it will be treated as a variable, in 
the spirit of a 1/N expansion. Compared with the two-flavour case, the size of 
the SU(3)I representations grows considerably more rapidly with increasing N. 
Since the strange quark mass is by definition of order O(1), it induces a mass 
difference of order O(N) between the highest and the lowest strangeness mem- 
bers of a multiplet by simple counting of the number of strange quarks. On the 
other hand, in the SU(3)-symmetric case of zero quark masses, the splittings 
between the different multiplets are only of order O(1/N). Thus the concept of 
a weakly broken SU(3) symmetry fails as N grows. Instead of looking at entire 
multiplets, it is more meaningful to focus on states with strangeness of order 
O(1), which are the large-N analogues of N, A, A, E, ~*, etc. The lowest stran- 
geness members of the representations are shown in Fig. 16. Since the multiplets 

~m and B I I I l l  
i o e  ° , , U 

Fig. 16. Young tableaux for states with strangeness of 0(1). 

contain baryons with up to O(N) strange quarks, the wave functions for baryons 
with O(1) strange quarks only extend O(I/N) into the strange directions in the 
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collective coordinate (A) space. This suggests the possibility of constructing a 
perturbation theory based on these deviations leading to 1/N expansions for 
various baryon observables. 

4.3 Rig id  Rota tor  and x/N Expans ion  

Consider a soliton which rotates in the SU(2) subgroup and carries out small 
rigid oscillations into the strange directions [11]. To describe this object, the 
SU(3) collective coordinate A can be decomposed as 

with 

A(t) -- B(t)S(t) (78) 

B(t) E SU(2) , S(t) = exp (i  7a~=4d~(t)A~) . (79) 

Since the kinetic energy associated with B is of order O(1/N), one can ignore 
the SU(2) rotation in the O(1) treatment. Expanding the collective coordinate 
Lagrangian, including the mass term, to second order in the strange deviations 
d~, one finds 

£ = £4s + £67 (80) 

with 
N • d id , ) -  m2ga Z:ij = 2~(d~ + d~) + -~(didj - - - ~ ( d ~  + d~). (81) 

This describes a particle of mass 44~ on a plane (di, dj) with a normal magnetic 
field N and a quadratic potential symmetric about the origin. The quadratic 
potential simply originates from the strange mass, whereas the magnetic term 
comes from the Wess-Zumino part. Thus, even when the strange mass is swit- 
ched off, the magnetic field (which is of order O(N)!) prevents the particle from 
moving far in the (i, j) plane and perturbation theory in the deviations is ap- 
propriate. Of course, for vanishing mass, there is no reason to choose the corner 
of flavour space with small strange content as the one relevant for describing the 
lowest-lying baryons; only introducing the strange mass guarantees the corner 
with low strange content to be the one with the lowest energy. 

The classical frequencies of the circular motion in the magnetic field are the 
roots of 

4~w 2 + Nw = m2g a (82) 

i.e. 

w+ = ~-~ 1 + \M00] ± 1 , M~ = 16~a "~ O(1) (83) 

As mg ~ O, w+ --4 N/4qS, the cyclotron frequency, and ~ -  ~ 0, which expresses 
the degeneracy of the Landau levels. If one defines a doublet 

1 ( d ,  - (84) 
D = - ~  \d6 idT] 
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then the Lagrangian for the strange degrees of freedom can be written as 

= 4~/9t/9 + i N ( D t D  - / g t D )  - am2KDtD (85) £ 

and the Hamiltonian is 

Ho = 17111 + -~-~(11tD - DtII) + ~-~ + arn2g DtD (86) 

where 111 is the momentum conjugate to D. To diagonalize H0, one can trans- 
form to the basis of creation and annihilation operators 

D =  ~ 1 +  ( a + b  t) (87) 

n t  = 1 + (at  _ b) (88)  

with Mo defined as above. In this basis, 

1 1 b . go = ~w_{a, a t } + ~w+{ , b t} (89) 

The eigenstates form a Fock space 

= (at) "* (bt) n~lO) (9o) 
Holns,n~) = ¢0_ + ¢o+ + ns~-  + n~w+ (91) 

Ins, n~) looks as if it contains ns strange quarks and n~ strange antiquarks. States 
with n~ ¢ 0 are exotic states, which are usually presumed to be artefacts of the 
rigid rotator approximation. In an improved treatment,  which will be exhibited 
below, these states disappear. Even in the rigid rotator approximation, in the 
limit of vanishing strange mass, it takes energy w+ ~ N/44 f ,,, O(1) to create an 
extra strange antiquark (as opposed to replacing a u- or d-quark by an s-quark, 
which takes no energy). 

One can now evaluate the strange content of the low-lying baryons to leading 
order in 1/N 

(~s)B ~ (01OtOl0) = 2 (92) 
R = (flu +dd + gs)B Y v / 1  + (mg/Mo) 2 

where B denotes any finitely excited state. Thus, the mean squared deviation 
in the strange direction is of order O(1/N), which justifies the perturbative 
approach presented here for large N. A standard fit gives Mo ~ 250 MeV, 
which signifies appreciable non-linearities at m g  ---- 495 MeV, thus invalidating 
perturbation theory in the mass. In meson physics, all quantities are typically 
expanded in powers of (mg/47rfir) 2 ~ 0.25, which is why the higher powers can 
usually be neglected. The results presented here imply that ,  in contrast to meson 
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physics, which only is concerned with small fluctuations about the vacuum, a new 
mass scale M0 << 4~rf, emerges in baryon physics. Possibly, (mK/Mo) 2 should 
be identified with O(ms/AQCD ), which is the expected expansion parameter. 

The baryon states (90) carry no definite isospin or angular momentum. In 
order to identify the eigenstates of I and J and to find the energy levels to order 
O(1/N), the collective coordinate B(t) must be excited. A convenient form for 
the 1/N correction to the Lagrangian can be given in terms of the angular 
velocity da/dt defined by 

B _ I B  = i .  (93) "~OiTi 

where ri are the Pauli matrices: 

1 t 5/: = 1/)(5,)2 + i&i(2+ - £2)(J[:)*riD - D*r,D) - -~N&iD riD • (94) 

The resulting Hamiltonian reads 

H = Ho + H1 + O(1/N 2) (95) 

with 

1 [ j  ~ ( .I'2) N_~D?=rD] 2 g l = ~  ,,,~- ( I I t ' r D - P ? r I I )  1 - - ~  + .. .O(1/Y) 

(96) 
where Jud is the momentum conjugate to a ,  which is the analogue of the net 
angular momentum of the u- and d-quarks. The full angular momentum can be 
obtained by considering the behaviour under spatial rotations, Uo --+ RUoR -1, 
which acts on B and D as D ---+ R-1D and B ---+ BR. Using Noether's theorem, 
the total angular momentum turns out to be 

J = J~a + J~ (97) 

where 
1 t a~ = ~(a r a - b r b * ) .  (98) 

Under isospin rotations, by contrast, U ---+ FUF -1, and therefore B -+ FB and 
D --+ D. Thus isospin is only carried by the SU(2) rotor wave function, i.e. 
I = Iua. Each unit of strangeness carries 1/2 a unit of angular momentum and 
no isospin. Notice that  these are just the quantum numbers of a strange quark. 

The wave functions are sums of products of the form 

(B) (99) 

which carry a definite isospin I and a well-defined total angular momentum. 
Since the rotator wave functions XI satisfy the J~d ---- I rule, there is a further 
constraint on the quantum numbers: For odd N, the baryon is a fermion and 
must therefore carry half-integer spin. This forces states with even strangeness 
to carry half-integer I; states with odd strangeness must carry integer I. This 
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leads to the actually observed baryon quantum numbers. A few of the lowest 
wave functions are as follows, where the labeling is Ins, n~)lI~,d, Jud): 

IN) = 10,0)11/2,1/2) I A) = [0,0)13/2,3/2) 
IA) = ll,0)10,0> I f )  = [ll,0>11,1>]j=1/2 (100) 
IZ*) = [11, 0)11, 1)]J=3/2 

Next, one can compare the predictions for the masses with the ones from the 
non-relativistic quark model. In the latter, 

HNRQM =mo+mllSl+m2~_,3,3k +m2c~_,.h3r +m2~ ~_, 3f3K (101) 
i<k  i,1 I < K  

where small indices refer to light quarks and capital ones to strange quarks. The 
parameter  m0 is of order O(N); ml  is the difference between the constituent 
masses of the strange and the light quarks, which is of order O(1); rn2 measures 
the quark-quark interaction, which is of order O(1/N). SU(3) breaking means 
m t >  0 and, typically, ~ < c < 1. The spectrum is of the form 

HNRQM =m~o +m~y + rn2 (cJ(J + I) + (1-c) (I(I + I) - ~Y 

1 + g - 2Cy2 ) (102) 
4 

The Gell-Mann-Okubo mass formula 

2(MN + M~) = 3MA + M~ (103) 

is fulfilled if 1 + ~ - 2 c  ~ 0. A good fit to the octet  and the decuplet is achieved with 
rn~ = 1062 MeV, m~ = -192  MeV, m2 = 2/3 MeV, c = 0.67, and ~ = 0.27. Note 
how far c and e deviate from the SU(3)-symmetric  values c = e = 1. Usually, 
the Gell-Mann-Okubo formula is justified by chiral perturbat ion theory. In view 
of the obtained values for c and ~, this seems to be the wrong explanation, and 
it may only work by accident. 

In the rigid rotator  model, one obtains a mass formula similar to HNRQM 
by evaluating matr ix elements of Hi --, O(1/N). Comparing coefficients gives 

4Dw 
m2 = 1/~2 , c = 1 8~w + N ' c = c2 " (104) 

H1, however, does not contain the full 1IN corrections. In order to keep track 
of strange-strange quark interactions, one needs to include all terms up to order 
D 4. Comparing with experimental da ta  gives w = 248 MeV, m2 = 196 MeV, 
and c = 0.25, which is very far from the empirical value c = 0.67. This induces 
incorrect relative splittings between A, E,  and E*, which is a further indication 
that  the rigid rotator  approach is insufficient. 

Up to now, the rigid SU(3) rotations have simply been split up into a SU(2) 
part  and one describing rigid rotat ion into the strange direction. However, once 



The Skyrme Model 211 

the kaon becomes massive, rotations into the strange direction are only approxi- 
mate collective coordinates. In an exact t reatment ,  deformations of the soliton 
as it rotates into the strange direction must be included. These effects become 
significant for sufficiently large strange mass. 

4.4 The Bound State Approach to Strangeness 

Due to the strong deformation effects, a t reatment  of general fluctuations in the 
strange direction about the basic SU(2) Skyrmion is needed [2]. A convenient 
parametrizat ion is 

U = V/--~UKV~ (105) 

where 

U, = exp 2i )~jTrj UK = exp XaK a (106) 
j : l  / a=4 

where )h are the usual SU(3) generators. Similar to the last section, one can 
organize the expansion in kaon fluctuations (which amounts to a 1/N expansion) 
in terms of the doublet 5 

( 1 K4 - iK5 ~ (107) 
K = -'~ K6 iK7 ] = K ° 

where the K ~, however, are no longer quantum mechanical variables, but fields, 
which allows for a description beyond the rigid rotator  approximation. Further- 
more, one can define a "covariant derivative ''6 

and a quanti ty 

(108) 

= 1  t A u ~ (V/-~t, 0 .  v ~  } . (109) 

After expanding the Skyrme Lagrangian to second order in K,  one arrives at 
the kaon-soliton interaction Lagrangian 

/: = / : sk (U~)  + (DuK)t DUK - m2KKt K 

-~  K tK  {Tr(OuU~OUU') + I---~ Tr[OuU~U~ 'O~U'~U~]2 f~ 

1 {2(DuK)tD~KTr(AUA~ ) + I(DuK)tDuKTr(O~U~O~U~ ) 
e2f .  2 

- 6 ( D , K )  t [A ", AU]DuK} 
iN + - ~ s u ( g t  D , g  - (D,g)t  g)  . (110) 

5 This can be justified more generally by the theory of non-linear SU(2) × SU(2) 
realizations, see [12]. 

6 This is motivated by the analogy to the minimal coupling in gauge theory; here one 
essentially treats the motion of K in the "background field" of the soliton. 
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The last piece originates from the Wess-Zumino term. It describes the interac- 
tion of a charged field (the charge here being the strangeness) with a "vector 
potential" B v, which is the baryon current. This is the only term which distin- 
guishes between s < 0 and s > 0 in a fixed baryon number background, which 
again illustrates the crucial role of the Wess-Zumino term. 

The Lagrangian (110) reduces the problem to the motion of kaons in the 
classical background of the SU(2) soliton. For large N, the solitons rotate slowly, 
with velocities of order O (1/N). Therefore, to find the kaon energy levels to O (1), 
it is sufficient to consider propagation in a static background U~(r) = U0(r) 
which is symmetric under simultaneous spatial and isospin rotations T = I + L. 
The lmon eigenmodes can be written as 

K(r,  t) = k(r, t)YTLT. • (111) 

The effective Lagrangian for k(r, t) is 

L = 4~r f dr r 2 (f(r)k']~ + iA( r ) ( k ' k  - ]ctk) - h ( r )k t ' k  ' - ktk(rn2g + Veff  (r, T, L)) 

(112) 
where f, A, h and V, I I  depend on the soliton profile function F(r)  [2]. The cor- 
responding variational equation reads 

- f ( r ) k  + 2i)~(r)k + Ok = 0 (113) 

where 
1 d 2 d  

o = v ~ h ( r ) r  ~ - mR - Veff(r) .  

Expanding k in terms of the eigenmodes, 

k(,', t) = ~_ , (k , , ( , ' ) e '~°% + k,,(,')e-'~'~ta,,) 
n > O  

one obtains the eigenvalue equations 

(f(r)w~ + 2~(r)w. + O)k. = 0 

( f ( r )~ ,  - 2~(~)~  + o)k~ = 0 .  

Using the hermiticity of O, one finds the orthogonality relations 

4~ f dr r2k~k~[f(r)(w~ + w~) + 2A(r)] = 5 .~ 

47r f dr r2k~k,,~[f(r) (~,~ + (z,~) - 2A(r)] = 6..~ 

4~ f dr r2k~k~[f(r) (~ .  - ~ )  + 2~(r)] = O. 

Upon canonical quantization, these relations insure that 

(114) 

(115) 

(116) 
(117) 

(11s) 

(119) 

(12o) 

(121) 
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The Hamiltonian reads 

1 1_ f 

and the strangeness charge is measured by 

S = E b~b,~ - a~an .  (123) 
n > 0  

The lowest kaon bound state is found in the T = 1/2, L = 1 channel (S = -1 ) ;  
numerically, its energy is wbs ~ 160 MeV. This is the state on the basis of which 
the A, X, and E* are constructed below. By contrast, its strangeness conjugate 
is pushed out into the continuum by the Wess-Zumino interaction. This is an 
example of how the exotic states appearing in the rigid rotator  approximation 
can disappear in a more complete t reatment .  There is also a more weakly bound 
state with T = 1/2, L = 0 which corresponds to negative parity baryons, such 
as the A(1405). This state constitutes a success of the bound state approach, 
since it generally appears at much too high energies in other models. It is also 
not present in the rigid rotator  approximation. 

To construct the A, Z,  and ~:*, one must carry out the SU(2) collective 
coordinate quantization: 

U0(r) --+ B( t )Uo(r )B- l ( t )  K ( r , t )  --+ B(t)[':(r,t)  (124) 

where k is the kaon field observed from the rotating frame. One can show that  
the quanta of/TE, which are annihilated by an and b,,, carry no isospin and have 
angular momentum given by T = I + L, which is fractional. A meson bound in 
the T = 1/2, L = 1 orbital has J = 1/2, I = 0, S = - 1 ,  which are the quantum 
numbers of a strange quark. 

The picture of the hyperfine splittings is basically the same as in the rigid 
rotator  model and the non-relativistic quark model, except that  here 

f dr r2k*kg(r) 
c = 1 - w (125) 

f dr r2k*k(wf(r)  + )~(r)) 

where 

X ( r ) -  Ne2 , "  2 
27r2r------ 2 F sm F (126) 

2 sin 2 F 
f ( r )  = 1 + r-------5~ + ( f ' )  2 (127) 

4 cos2(F/2 ) _ 2 { d 4sin2 F c o s 2 ( F / 2 ) }  (128) g(r) = -~f -~ [r2F ' sin F] - 5 " 

Numerically, one now finds c ~ 0.6 in good agreement with experiment. The 
mass splittings 

1 - c 3 c  3 
ME - MA -- ~ ME- - ME = 2--~ M a  - MN = 2---~ (129) 
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come out with approximately the correct ratios. 
Comparing with the rigid rotator t reatment ,  one finds that  a small rotation 

in the strange direction produces a meson with the profile function 

k(r) ~ s in(F(r ) /2)  (130) 

in the T = 1/2, L = 1 orbital, i.e. all formulae of the bound state approach 
reduce to the rigid rotator  approach upon substitution of (130). The advantage 
of the bound state approach manifests itself in the fact that  it allows the kaon 
profile to adjust itself away from the SU(3)-symmetric  one. This effect is clearly 
significant, as the shift in c from 0.25 to 0.6 shows. This is further corroborated by 
the significantly improved comparison with experiment. The emergence of the 
negative pari ty baryon states, as mentioned above, is especially encouraging. 
Besides the I = O, j R  = 1 /2-  state which is numerically found at 1360 MeV, 
and which must be identified with the A(1405), one finds an I = 1, j R  = 3 / 2 -  
state at 1664 MeV, which must be identified with the S(1670). A state with no 
confirmed empirical counterpart  with I = 1, j R  = 1 /2 -  is found at 1380 MeV; it 
may perhaps be identified with the candidate E(1480), the spin of which should 
turn out to be 1/2 in order to agree with the present model. 

Various other calculations confirm that  the bound state approach may be a 
sensible approximation. Magnetic moment calculations by Nyman and Riska are 
given in table 2 (in units of # g )  One finds many model-independent relations, 

Table  2. Results of the three flavour Skyrme model 

Bound State Appr. Quark Model Experiment 
A -0.90 
57+ 2.32 

r ° 0.72 
57- -0.88 
S O -1.78 
.~ -0.72 
[570 _~ A[ 1.60 

input 
2.67 

0.79 
-1.09 
-1.43 
-0.49 
1.63 

-0.613 + 0.005 
2.38 ± 0.02 

2.479 ± 0.025 

-I.166 ± 0.017 
-1.250 ± 0.014 

-0.69 ± 0.04 
1.82 + 0.25 

- 0 . 1 8  

for example # ( / 2 - )  = 3]~(A), which also holds in the quark model. Recently, a 
host of baryon properties such as charge radii, magnetic moments, weak decay 
amplitudes, dibaryons, etc. have been calculated in the framework of the bound 
state approach by Rho, Scoccola, Nyman, Riska, Kunz, Mulders, Dannbom, 
Bjornberg, and others (for references, see [13]). There are several interesting 
ways to extend the t reatment  further: 
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- Some improvement is achieved by SU(3) symmetry breaking in the kinetic 
terms in the kaon Lagrangian: f~ ~ f g  "~ 1.22f~ reduces the overbinding 
of the kaon modes. Wbs of the lowest bound state becomes about 221 MeV 
[14]. 

- Some K -  K interaction effects have been neglected and may alter the results 
for baryons with multiple strangeness. 

- One of the original motivations for the bound state model was the treatment 
of charmed baryons. Incorporating only the pseudoscalar D and using f~ --~ 
]D ~ 1.8f~ in the D-Lagrangian, one finds the same quantum numbers and 
ordering of states as in the quark model [14] [15] [16]. However, the vector D* 
is only slightly heavier than the pseudoscalar and it is necessary to include it 
to maintain heavy quark symmetry. This program has been started in [17], 
[18] and gives good results. 

- Another interesting open problem is the description of dibaryon states in the 
bound state approach, most importantly the S = - 2  dibaryon. In the SU(3)- 
symmetric model, it is tightly bound and absolutely stable. In the bound 
state approach, one would have to study kaon modes in the background 
of a B = 2 SU(2) solution [13], [19]. An exact t reatment should be done 
numerically. 

- Similarly, one can s t u d y / ~  modes in the background of SU(2) nuclear mat- 
ter. This may lead to k condensation [13]. 
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Introduct ion  to S u p e r s y m m e t r y  
and Exact  Nonper turbat ive  Resul t s  
in S U S Y - Q C D  * 

Notes by H.W. Grieflhammer, D. Lehmann, and M. Seeger 

Institut fiir Theoretische Physik III, Universit~it Erlangen-Niirnberg, Staudtstr. 7, 
91058 Erlangen, Germany 

1 I n t r o d u c t i o n  

In the last two years, the work of Seiberg, Witten and their coworkers yielded 
remarkable progress in the understanding of the dynamics of supersymmetric 
gauge theories in four dimensions. 

Supersymmetry (SUSY) is likely to play an important role in the description 
of the fundamental interactions beyond the Standard Model. It is a field theore- 
tical concept which, although it can be build upon the fundamentals of quantum 
field theory without altering any of its basic assumptions, leads to dramatic phy- 
sical and interpretational consequences. Because it is a symmetry transforming 
fermions into bosons and vice versa, if a theory is supersymmetric the particles 
in this theory always appear in pairs of one boson and one fermion. 

Any supersymmetric quantum field theory which is supposed to be an ex- 
pansion of or a substitute for the Standard Model must be able to account for 
the lack of experimental evidence for this doubling of thepart icle spectrum. 
(The explanation accepted by most physicists is the spontaneous breakdown of 
supersymmetry.) Furthermore, by the introduction of supersymmetry the strict 
separation between matter fields (fermions) and force fields (bosons) becomes 
obsolete; matter and force appear from a unified point of view, which is formally 
and esthetically very appealing. 

The concept of supersymmetry entered theoretical physics in the 1970s. Soon 
it turned out that SUSY admitted a solution to the "hierarchy problem" of 
particle physics, i.e. the problem of explaining the stability of the 13 orders of 
magnitude between the GUT scMe and the mass scale of the electro-weak bosons 
in perturbation theory. In supersymmetric theories, Feynman diagrams which 
would make such a gap unstable are cancelled by the corresponding diagrams 
involving the supersymmetric partners. 

It is a similar mechanism of cancellation which makes supersymmetric theo- 
ries interesting from a different point of view: Due to the relative minus signs 

* Lectures at the workshop "Nonperturbative QCD" organised by the Graduierten- 
kolleg Erlangen-Regensburg, held on October 10th-12th, 1995 in Kloster Banz, 
Germany 



218 Notes by H. W. GrieBhammer, D. Lehmann, M. Seeger 

between diagrams related to each other by replacing a particle in a closed loop 
by its super-partner, many of the notorious infinities which are usually present 
in quantum field theory drop out completely. The divergences of a theory be- 
come always milder by making it supersymmetric, and even more, some theories 
become exactly finite. 

In the present notes, we will not discuss these aspects but rather treat su- 
persymmetric gauge theories as solvable model field theories in four dimensions 
trying to learn the relevant lessons for the structure of QCD. In particular we 
will discuss the work of Seiberg and Witten on N = 2 SUSY gauge theories. The 
exact information about the infrared behavior of these theories offers important 
insights about the mechanisms of confinement and chiral symmetry breaking. An 
important methodological lesson to be learned is the necessity to use conjointly 
the variety of tools available in the study of quantum field theory: it seems that 
the algebraic structure, the renormalization group, the existence of topologically 
non trivial, non perturbative configurations all play an important role in the 
understanding of the infrared structure of the theory. 

These proceedings are concerned with a thorough introduction into basic su- 
persymmetry [1], [2], [3] and into the ideas of Seiberg and Witten. In Sect. 2, the 
Poincar6 group and its spinorial representations are introduced,and in Sect. 3, 
the SUSY algebra is explained in detail. In Sect. 4, the representations of this 
algebra on Hilbert space are studied. Section 5 discusses the realization of super- 
symmetry in quantum field theories and introduces the concept of superfields. 
The goal of Sect. 6 is to discuss separately the "ingredients" used in the solution 
of the N = 2, SU(2) supersymmetric Yang Mills theory as found by Seiberg and 
Witten. Section 7 finally aims at a consistent solution of N = 2 SUSY-QCD. 

2 Lie Algebra of Symmetries and Spinors 

Supersymmetry will become most transparent when it is understood as an exten- 
sion of more conventional space-time symmetries. We will start our introduction 
therefore with a discussion of the spacetime symmetries described by the Poin- 
car~ group. In coordinate space, a Poincar~ transformation is defined by: 

z "  = A~' ~ z ~ + a ~ (1 )  

where A represents the Lorentz transformation and a the spacetime transla- 
t ion.  To each element (A, a) of the Poincar~ group a linear operator T(A ,  a) is 
associated which acts on field space as 

# ' (x)  = T(A ,  a) ~(z )  = D(A) ¢ ( A - l ( x  - a)) , (2)  

where T)(A) is a finite dimensional representation matrix of the Lorentz group, 
corresponding to the spin degrees of the field #. The infinitesimal generators 
of Poincar6 transformations are the four components of the four momentum 
PU = i 0 ~ and the six independent components of the antisymmetric Lorentz 
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generators M ~ .  The lat ter  can be decomposed into an orbital  par t  L "v and a 
spin par t  S "~ : 

M ~'~ = L ~'~ + S "~ , L ~ = x g p  ~ _ x " p g  (3) 

For example for four component  Dirac fermions the spin par t  is given by 

1 i 
S . ~ = ~ . " : ~ [ . y . , 7 ~ ]  • 

These ten generators form a Lie algebra with the commuta t ion  relations 

(4) 

[ P U ,  P~ ] = 0 ,  

[ M  "~,  Pp] = i ( g " p P u  - g p p P " )  , 

[M "~, M pC] = i ( g ~ P M  .~ + g " ~ M  ~p _ g U P M ~  _ gV~M~p ) 

(5) 
(6) 
(7) 

where we use g ~  = g~V = diag ( 1 , - 1 , - 1 , - 1 )  as Minkowski metric. With  the 
help of the above commuta t ion  relations it is easy to see tha t  the mass-square 
operator  p2  = p ,  p u  and the square of the Pauli-Lubanski  spin vector, W 2 = 
W , W  ~', commute  with all the generators,  i.e. they are the Casimir operators  of 
the Poincar~ group. W "  thereby is defined as 

1 , ~  1 
W "  = - -  c" P Pv Mp~ E "~p~ P~ Sp~ (8) 

2 = - 2  ' 

and for massive representat ions its square is proport ional  to  tha t  of the spin 
operator  1 

1 i~k W 2 = - m  2 S  2 , S ~ = ~ e  J S j~ (9) 

Besides the spacet ime symmetr ies  there are often internal symmetr ies  like 
charge, flavour or colour symmet ry  present in field theories. An impor tan t  theo- 
rem by Coleman and Mandula  [7] states tha t  in a local relativistic quantum field 
theory in four spacet ime dimensions, the most  general symmet ry  group of the 
S-matr ix  necessarily is a direct product  of the Poincar~ group with a compact  
internal Lie group, provided tha t  [1], [3]: 

- there is only a finite number  of different particles associated with one-particle 
states of a given mass; 

- there is a unique vacuum and a finite mass gap between it and the lowest 
one-particle state; 

- we restrict ourselves to Lie groups. 

Moreover, the internal symmet ry  group must  be a direct product  of a compact  
semisimple group with U(1) factors [3]. So, the most  general Lie algebra consists 
of the Poincar~ generators P~,  M ~ and a certain number  of Poincar6 invariant 

1 We adopt the conventions: epvap = _~,vap, E0123 : 1, E i j k  = ~ i j k  = EOijk. 
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generators Br of the internal symmetries, which can always be chosen Hermitean 
due to the compactness of the internal group: 

[ B r , B s ] = i c ~ s B  t , [ B r , P " I = [ B r , M ~ ] = O  . (10) 

The algebra spanned by the Br then is the direct sum of a semisimple and an 
t Obviously, because of Abelian subalgebra and has the structure constants Crs. 

[ B~, p2 ] = [ B~, W 2 ] = 0, all particles of an irreducible multiplet of the internal 
symmetry must have the same mass (O'Rai]eartaigh's theorem [6]) and the same 
spin. 

The Coleman-Mandula theorem does not leave much freedom for more general 
symmetries, since its assumptions seem to be quite reasonable from the physical 
point of view. However, it only covers "bosonic" symmetries, that means sym- 
metries whose generators do not mix fermions and bosons and therefore satisfy 
the commutation relations (10). Supersymmetry relaxes this very assumption of 
a Lie algebra and generalizes it to a graded Lie algebra, that is, allows for "fer- 
mionic" or "odd" generators which transform like spinors under Lorentz trans- 
formations and, acting on states, change their spin by a half-integer amount. 
Therefore, supersymmetry by definition is a symmetry between bosons and fer- 
mions; multiplets of supersymmetric theories will contain particles with different 
spin and statistics. The importance of supersymmetry arises from a theorem by 
Haag, Sohnius and Lopuszanski [8], who showed that supersymmetry is the only 
graded Lie algebra of symmetries of the S-matrix consistent with relativistic 
quantum field theory [1]. 

But before we turn to supersymmetry and explore the consequences of intro- 
ducing fermionic generators, we will use the rest of this section to prepare the 
ground and review some properties of finite dimensional representations of the 
Lorentz group. 

The spin generators S u~ introduced earlier commute with the momenta P~ 
and the angular part L ~" of M ~ and thus generate via (7) the finite dimensional 
Lorentz group representation :D(A) in (2). With the aid of the spin operators 
S ~ of (9) and the boost operators K i = S °~, we can rewrite the commutation 
relations (7) in a non-covariant form: 

[ S i ,  S j] = ieiJk S k , (11) 

[ K i, K j ] = - i  ~ijk Sk , (12) 

[K i , S j ] =  ieiJkK k (13) 

By forming the complex linear combinations 

= l ( s + i g )  , B - - I ( s - i K )  , A ?---B , A (14) 

they can be decoupled into 

[ A i , A  j ] = i~i jkAk , 

[ B i, B j ] = i ~JkBk , (15) 

[A~,B  j ] = 0 . 
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From (15) it is clear by analogy with the rotation group SU(2) that A 2 and B 2 
are Casimir operators with eigenvalues a(a÷ 1) and b(b+ 1), (a, b E ½IN). We can 
use them to label the irreducible representations by (a, b); their dimension will 
then be (2a+l~(2b+l). Note, however, that  a complex continuation was necessary 
in (14), so that the local structure of the Lorentz group is not SU(2) ® SU(2) 
despite of (15). In fact, because of the non-compactness of the Lorentz group, its 
finite dimensional representations cannot be unitary. Moreover, to be rigorous 
for a moment, the corresponding Lie group is not the full Lorentz group but 
the proper orthochronous part £:~_, defined by A ° > 0, det(A) = +1. The lowest 
dimensional non-trivial representations of f.~+ are obviously (½,0) and (0, ½) with 
generators and representation matrices given below: 

(½,o) : 

(o, ½) : 

S=a__ .a 1 
2 ' K = - l ~  , S " ~ = ~ a "  , 

D ( A ) = e x p  ~ o ' . ( ~ - i ~ )  =exP~4W.~,c r ) 

o" o- 1 ~,~ 
S = ~ ,  K = + i ~ ,  S~'~=~O , 

--  exp ( i  ) ( i e x p  4 w ~ a  -"~) = + = 

(16) 

Both representations form a SL(2, C) due to the traceless-ness of the Pauli ma- 
trices a i. They are related by 

-D(A) = ~ D(A)* ~-1 E = i a 2 =  ( 0 1  10) , (17) 

as can be seen with help of the relation a 2 o'* a 2 = -er. This means that (0, ½) is 
equivalent to the complex conjugate representation of (½,0) and thus inequivalent 
to (½, 0) itself. The contragredient Lorentz transformation A -IT is represented 
by the contragredient SL(2, C)-matrix, 

D(A -1T) = D(A) -1T = eD(A) c -1 (18) 

This leads us to establish the following tensor calculus for spinors: Let ¢ = (Ca) 
be a two component Weyl spinor transforming according to the fundamental 
representation (½, 0). Then ~ ¢ transforms contragredient and is therefore deno- 
ted by upper indices (Ca); due to (17), e¢* is a (0, ½)-spinor and denoted by 

"dotted" indices (¢-~) to distinguish it from the "undotted" (½,0)-spinors, so 
that altogether we have the transformation properties 

¢~ = D ( A ) . / 3  ¢~ , 

~' ~ = (D*)-I(A)/3 ~ ~ , 

¢ '~  = D-I(A)/3 ~ ¢~ ; (a,/3 = 1,2) 

¢ ' a = D * ( A ) 6 ~  ; ( & , ~ = l , 2 1  
(19) 
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Thus, ¢ = (~aS) and e -1 = (ea8) play in spinor space an analogous role as the 
metric tensor gu: in Minkowski space and may be used to raise and lower the 
spinor indices 

= e ~ ,  ~ : ~ z .  (20) 

The raising and lowering of indices commutes with the complex conjugation, 
since in (17) we have defined the e-tensor to be real and we numerically equate 
the dotted and undotted c-tensors. Unlike g ~  in Minkowski space, E a~ is anti- 
symmetric, stemming from the fact that  SL(2,C) is not only the covering group of 
the Lorentz group, but also equivalent to the two dimensional symplectic group 
Sp(2,¢). It is easily checked that  ¢a8 is invariant under Lorentz transformations. 
Our conventions are summarized as 

e a'Y e78 : ~ a  8 , E 12 : E 2 1  : 1 , 

(21) 

By definition, tensors of higher rank transform like products of fundamental 
spinors with the same index structure. Because of the contragredient transfor- 
mation properties, complete contraction over upper and lower indices leads to 
Lorentz invariant expressions. Thus, especially 

t x  := Ca xa = - C a  x a = x ¢  , 
(22) 

are Lorentz scalars; the last equalities hold, if the spinors are treated as Grass- 
mann (i.e. anti-commuting) variables. 

Without  proof we state that  spinors transforming according to an irredu- 
cible representation of/:~+ are totally symmetric in all indices. Note also that ,  
due to the two dimensional representation space, ant isymmetry in an index pair 
immediately implies proportionality to an ~-tensor in these indices. Therefore, 
arbitrary tensors of higher rank may be decomposed by a Clebsch-Gordan ex- 
pansion into a sum of irreducible spinors multiplied by some combinations of 
¢-tensors. 

It is instructive to discuss some explicit examples which will be of importance 
in our derivation of the supersymmetry algebra. First, let us consider a spinor 
X = (Xab) in the (½, ½)-representation, which has to transform like 

X'=D(A)~"~D'(A)o X.y~ or X '  = D(A) XDf(A). (23) 

It is convenient to introduce several sets of Hermitean basis vectors in the space 
of complex 2 × 2-matrices 

o .  = ( o . ) o ~  = (~, o ' )  , . .  = g . ~ o ~ ,  
(24) 
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where a ~ are the Pauli-matrices. The ~u are dual to the a ,  in the sense 

(au)~ B (~v) ~ = tr (a ~ ~v) = 26" ~ , (25) 

and both are related by 

(Ou) ~'~ = ~ ' ~  e ~ (au).y~ or ~u = -E a"* e . (26) 

We can uniquely associate an (in general complex) four component vector x u to 
every X by expanding in a basis, e.g. 

1 
Xat~ (~u)Sa = I tr (X ~u) (27) 

Under Lorentz transformations (23) of X it transforms like a Minkowski four 
vector, 

x~ u = 1 tr  ( X '  ~u)  A u ~, x"  
2 

(28) 
1 

Au ~ = ~ tr ( D ( A )  a~ Dr(A) du) 

That  the linear transformation A ~ ~ is indeed a Lorentz transformation matrix, 
follows from the observation that  the Lorentz invariant, symmetric bilinear form 
Xat } Y ~  might be rewritten in terms of gu~ x ~ yV, 

= 2 x u y "  

1 In (16) we defined the covariant (½,0)-generators S u~ = ~ ~ r'~. In terms of the 
basis vectors (24), they take the explicit form 

i ( a u ~  ~ _ a ~ a u  ) , (29) 

which is the Weyl spinor analogue of (4). The (0, ½)-generators ~al -u~ are related 
to them via (17), 

i (30) 
= -2 (aua~  - a ~ a u )  = aun t  

and it is not difficult to check by explicit calculation that  the following relations 
hold: 

a u ~ "  = 9 u" - iam" , (31) 

~u cr, = gU~ _ i a ~  (32) 

Next, let us consider the (½, 0) ® (½,0)-representation with spinors ~7~. They 
might be decomposed by a Clebsch-Gordan expansion into an irreducible (and 
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thus symmetric) (1, 0)-contribution X(a~) and an antisymmetric ( 0, 0)-contribu- 
tion Xia~}, 

f ( , ~  = X(,~o) + X[af~l , X[,~l = e ,~  (~e'~6 ff~.y) (33) 

We are now going to show that  the (1, 0)-spinor representation is equivalent to an 
antisymmetric rank 2 Minkowski tensor representation of the Lorentz group. To 
this end we map the symmetric spinors X ( ~ )  one to one onto traceless spinors 
by raising the second index, 

X~ ~ = X(a~) e ~ , X~ ~ = 0 . (34) 

Traceless 2 x 2-matrices X = (Xa ~), however, are nothing but the Lie algebra 
of SL(2,C) and so may be expanded uniquely in terms of the generators a~,`,, 

X~ e = x'`, (a.~)~ ~ , (35) 

thereby defining the real antisymmetric coefficients z ~`,. We are left to derive 
their Lorentz transformation properties from the transformation property 

X ' , ~ = D ( A ) a ' r D - ' ( A ) 6 ~ X . r  6 or X ' = D ( A ) X D - a ( A )  (36) 

of the (1, 0)-spinors. From (28), we have 

D(A)  a~, Dt(A) = A p . ap , (37) 
D(A) a .  ~ t  (A) = AP.  ~p , 

and using D -1 = ~ t  we obtain the Lorentz transformation behavior of the a~,. 

D(A)  at,,, D - ~ ( A )  = A p t, A" ,, no,, , (38) 

which in fact proves that  the coefficients x u" transform as Minkowski tensors, 

x'P~ = AP u A~ ,̀ xu`, • (39) 

3 S u p e r s y m m e t r y  A l g e b r a  

The key idea underlying supersymmetry is to extend the Lie algebra formed by 
the bosonic generators 13i = P ' ,  M ~',  Bt to a graded Lie algebra by supplemen- 
ting it with a set of fermionic generators j c .  A graded Lie algebra is defined by 
the (anti-)commutation relations: 

k [ B~, Be ] = i % 13k , 

{.Ta, .T~ } = d~,t3 Bi , 

[ : r . , 8 ,  ] " = sai.T" ~ . 

k k . (40) c~j = -c~ , 

d ~  = d ~  (41) 

(42) 
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T h e  Jacobi  ident i t ies  general ize  to  

[[B1, B~t, ~3] + [[B3, B1], B~] + [[B~, B31, B1 ] = 0 
[ [ ~ ,  B~], B~] + [IBm, ~ , ] , B ~ ]  + [[B1, B~], J=~] = 0 
[{ ~ ,  73 }, B~] + { [B~, ~ ], J=~ ) - { [ ~ ,  B~ 1, J=l ) = 0 
[{ ~ ,  7~ }, J=3] + [{ J=~,7~ ) , ~  ] + [{ 72, ~ ), ~ ] = 0  

, (43) 

, (44) 

, (45) 

(46) 

Such a graded Lie algebra structure occurs almost naturally, if the generators - 
collectively called ~ for the moment - are of a bilinear form 

6 = ~ fdp dq a~ (p) Kij (p, q) aj (q) , (47) 
t3 

which is reasonable at least in non-interacting theories. We use a slightly sym- 
bolic notation here, and ai (p) may denote either bosonic bi (p) or fermionic fi (P) 
annihilation operators. By a bosonic (or even) generator we mean an operator 
that  consists of a pure bosonic and a pure fermionic contribution but does not 
mix fermions and bosons: 

z3 i j  

acting on states, it will not change their statistics. Correspondingly a fermionic 
(or odd) generator has the form 

~3 *J 

and does change the spin of a one-particle state by a half integer amount and 
thus its statistics. If we assume standard (anti-)commutation relations for the 
creation and annihilation operators, 

[bi(p), b~(q) ] = i~ij ~(p - q) , 
(50) 

{fi(P), f~(q)} = ~,j 5(p - q) , 

the left hand sides of (40)-(42) are the only combinations that  lead again to 
bilinear generators (47) of the appropriate statistics. 

Once having accepted this graded Lie algebra structure, which relates bosonic 
and fermionic generators intimately, we can exploit the knowledge of the bosonic 
subsector provided by the Coleman-Mandula theorem to determine the fermionic 
sector. We will denote the fermionic generators by Q from now on and assume 
that  with Q also Qt is a generator of the graded algebra. 

First, we will show that  the generators Q must necessarily be spin 1/2 Weyl 
spinors, if the underlying Hilbert space has a positive definite metric [1]. To 
this end we note that  every Q may be decomposed into a sum of/:~+-irreducible 
(a, b)-representations, 

Q = ~ Q(~I...,o),(~,...~,), (51) 
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where the Q(~l...ao),(dl:.2b) are totally symmetric both in the dotted and un- 
dotted indices separately as indicated by the brackets. Now consider the anti- 
commutator 

(Q(,1...,o),(~,..m), Q t } (52) (~l...~,),(~...~b) 

and equate all occurring indices. Since the resulting object will then be to- 
1 tally symmetric, it must be a component of the irreducible [~(a + b), ½(a + b)]- 

representation. However, for a + b > 1 there is no generator in the bosonic sector 
which transforms accordingly and might be used to close the algebra. So, (52) 
has to vanish, whenever all indices are equal. But since it is a positive operator 
in Hilbert space, the Q(~...~),(~...a) themselves have to vanish, by the positivity 
of the metric. What is more, they have to vanish in every ]tame, and so bec- 
ause of the irreducibility all the Q(a,...~o),(~l..2~) have to vanish. This completes 
our proof that no representations with spin higher than 1/2 are possible for the 
fermionic generators Q. We denote the (½, 0)-spinors by Q~ and the (0, !) 2 ones 

by QJ where ~,& = 1,2 are Weyl spinor indices. The indices i , j  = 1 , . . . , N  
label different kinds of generators and usually refer to some representation of an 
internal symmetry group. The case N = 1 is often called simple supersymmetry, 
whereas the N > 1 situation is usually referred to as extended supersymmetry. 
The Hermitean conjugate of each (½,0)-spinor Q~ must be one of the (0, 1 5)- 
generators Q~ and vice versa, so that by appropriate labelling 

~-~ = Q~t . (53) 

As a next step, we will fix the structure constants d ~  and s~i in (41), (42) as far 
as possible. The line of argumentation will be, first to determine the most general 
expression compatible with the Lorentz structure of the (anti-)commutators. The 
generators appearing at the right hand side of (41)-(42) are then identified by 
their Lorentz transformation properties. If there is no generator sitting in the 
corresponding representation, the contribution has to vanish. Additionally, we 
may then exploit Jacobi identities to further restrict the structure constants. 

The anti-commutator { Q~, Q~ } sits in the (½,0) ® (0, ½) = (½, ½)-represen- 
tation of the Lorentz group, which is equivalent to Minkowski space as we have 
seen in (27), (28), so that pu,  the only spin 1 generator in the game, has to close 
the algebra: 

{ Q~, Q~ } = 2 c ~j P.~ = 2 c ij ( a . ) . ~ P  ~ 

Evidently, the matrix (c ij) is Hermitean and may be diagonalized by a unitary 
redefinition of the Q 's. H all eigenvalues of (d j) are positive, we can renormalize 
the odd generators such that 

{ Q~,Q~ } = 2£ ~ ( a , ) ~  P~ (54) 
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Negative eigenvalues would give rise to a minus sign at the right hand side of 
(54). Taking the trace over the spinor indices with arbitrary but  fixed i = j gives 

E{Qi~,-Qia}= E { Q i a , Q i a t } = 2 t r ( a ~ P ~ ) = 4 P  ° , (55) 

which immediately implies that  with the 1.h.s. of (55) also the Hamiltonian 
H = p0 has to be positive definite. Note that an indefinite matrix (c q) would 
only be compatible with H = 0 and thus has to be discarded on physical grounds, 
leaving (54) as the only sensible possibility. 

The anti-commutator of two undotted odd generators lies in the (1, 0) ® 
(½,0)-representation and can be decomposed into an antisymmetric (0, 0)- and 
a symmetric (1, 0)-part, cf. (33) 

{ Q~, Q~ } = 2 ea~z q + M u" (auv), ~ Z (ij) , 

with Z ij (Z (q)) being antisymmetric (symmetric) Lorentz scalars and thus linear 
combinations of the generators of the internal symmetries, 

Z q = (at) q Br . (56) 

However, we will show below that Q~ has to commute with pu so that  the 
MU~-part must vanish in fact, Z (q) = 0, yielding 

{ i j Q , ,  Q~ } = 2 s , ~ z  q (57) 

{ Q. ,  } = (58) 

The vanishing of the commutator  of Q~ with the momentum P~ is more involved 
to derive by formal arguments, but rather obvious from the fact that  spacetime 
translations act only on the spacetime arguments and not on the spinorial degrees 
of freedom. As we already know, P "  sits in the (½, ½)-representation and we can 
associate a spinor PZ# = P "  ( a ~ ) ~  with it. The commutator  [Q~, P ~  ] then is of 
the type (½,0)® (½, ½) = (0, 1)2 ~9 (1, ½). Since there are no spin 3/2 generators 
present and the spin 1/2 component must be antisymmetric in the undotted 
indices, the only possibility is 

[Q~, ~# ] = 2 c '3 ~ Q~ (59) 

Projecting on P"  by contracting both sides with (#")#~ (see (25)) gives 

• -. ~,. - ~ j  
[Q~, P~ ] = - c  '3 ( a ) ~  q? , (60) 

[ ~--.~-~i /~ • . *  Q , P  ] = - d  J ( ~ , ) ~ Q ~  . (61) 

We can now use the Jacobi identity (44) to show that 

[[,  . Q,~,p ] , p ~ ] = [ [ Q ~ , p v ] , p ~ , ]  . (62) 
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Explicit evaluation of the double commutator,  however, yields 

[[ Q~, P "  ], P~ ] = c ik c kj* (a"~V),~ f~ QJ~ , (63) 

which is not symmetric in the Minkowski indices - cf.(31) - unless 

CC* = 0 . 

The matrix C = (c Cj) is symmetric, as can be seen by calculating 

1 ~ .  O= [ Z i i , P  ~'] = -~¢ [{ Q~,Q~ } ,P"]  ... (c ii - c / i )  , 

and we have CC ? = 0 or c O = 0. So, finally we have proven: 

[Q~, pu  ] = 0 , (64) 

[0~ ,  P "  ] = 0 . (65) 

The commutators of the odd generators with the Lorentz generators follow im- 
mediately from the transformation property of Weyl spinors, 

( - )  ( )  Q' :  = exp - -~wuvM Qaexp  +~w~, ,M = exp w , , a " "  a 

which implies for infinitesimal transformations 

1 [ Q ~ , M  ~" ] = - ~  (a~ ' ) .  f~ Q~ , 

I_-=4 
dr q 

(66) 

(67) 

We are left with the commutation relations between Q~ and the Hermitean 
generators Br of the internal symmetry. They are easily determined to be 

i B = [Q~, r] b 2 Q ~  (68) 

[ ~ , B , . ]  - ~  , = - Q ~  b~ i (69) 

saying tha t  the Q~ carry indeed a representation of the internal symmetry group. 
In (69) we have made use of the Hermiticity of the matrix (b~J), which can be 

shown by applying the Jacobi identity (45) to [ { Qa, Q~} }, B~ ] = 0 and inserting 
(68) and (54). 

Let us now consider the Poincar~ invariant operators Z ii introduced in (56): If 
we express them via (57) in terms of odd generators, Z ii = ½ E f~a { Q~, Q~ }, 

and apply the Jacobi identity (45) to [ { Q~, Q~ }, Br ], we obtain with the help 
of (68), (69) and (56) 

[ z ij, B~ ] = b'2 Z ~ + b~ ~ Z ik , (70) 

[zi~,  z k' ] = (a~) k~ b~ ~ z ~ ,  + (ar)~ be ~ Z i~ (71) 
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This means that the Z ~j form an invariant subalgebra of the internal symmetry 

algebra. Starting with [ { Q~, Q~ }, Q~ ] we obtain by a similar reasoning 

hence 

and thus 

[ ~ , z J ~ i  = 0 ,  (72) 

(a") ij b? l = 0 , (73) 

(}' g ~j (74) [~o,_ ]=0,  
[z'~, z k~ ] = 0 ,  (75) 

which implies that the invariant subalgebra spanned by the Z 0 is Abelian. Since 
the internal symmetry algebra is a direct sum of a semisimple and an Abelian 
part, the Z ij must be in the Abelian sector and thus commute with all the 
generators Br, 

[ z'J, Br ] = o .  (76) 

So, finally we have found that the Z ~j commute with all the generators of the 
SUSY-algebra. For this reason they are called central charges. Note that due 
to the antisymmetry in the indices, central charges can only exist in extended 
supersymmetries, N > 1. In the absence of central charges, the internal symme- 
try group is the largest possible, namely U(N), since the algebra is obviously 
invariant under a unitary substitution 

The effect of central charges is to reduce this symmetry to a smaller group. In 
the case of simple supersymmetry (N = 1) the internal symmetry group is U(1) 
and commonly referred to as 7~-symmetry, 

[ Q"' n ]  = Q" ' (77) 
[ ~ . , n ]  : - ~ . .  

m 

Since Q +~ Q under parity, it is a chiral symmetry. 

Let us conclude this section with a summary of the most general supersymmetry 
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algebra compatible with relativistic quantum field theory: 

[ p ~ ,  pv ] _ 0 (5) 

[ M m', PP ] = i (g~'P P~' - g ,ppv)  (6) 

[M~,M p~] = i (g~'PM "~ + g""M vp - g~'PM"" - graMS'P) (7) 

[Br,  P~'] = 0  

[Br, M ."] = 0 (10) 
[ B , . , B s ]  i t = Crs Bt 

{Qa, Q~ } = 2 *'J (a~,)a ~ P~ (54) 

{Q~,Q~ } = 2¢,~Z'3 , {-~,'QJ~ } = 2ea~ZO* (57,58) 

[ Q ~ , P " ] = 0  , [ ~ , P " ] = 0  (64,65) 

~(0" )a ~ , 1 ~  -i ((yu~$ . (66,67) 

[QL,B ] = = , - Q ~  (br) ij* (68, 69) 

[Z 0, any generator] = 0 

No further restrictions on the structure constants follow from the Jacobi identi- 
ties, as can be seen by checking them all explicitly. 

4 R e p r e s e n t a t i o n s  of  the  S u p e r s y m m e t r y  Algebra  

The unitary irreducible representations of the SUSY algebra are spanned by sets 
of one-particle states; this is completely analogous to the representation theory 
of the Poincar6 group. 

Because every representation of the SUSY algebra is trivially a represen- 
tation of the Poincar6 algebra (the latter is a subalgebra of the former), its 
representation vectors can be labelled by eigenvalues of the mass-square opera- 
tor P~'P~, = M 2 and the square of the Pauli-Lubanski spin vector WJ'W~,. The 
latter ones eigenvalues, - M 2 s ( s  + 1), with s an integer or half-integer can, in the 
massive case be used to further specify the representation while in the massless 
case the spin is replaced by the helicity which is also an integer or half-integer. 

The SUSY generators commute with P~'P~, but not with W~W~,; an irredu- 
cible representation of the SUSY algebra will therefore contain different spins or 
felicities but only one mass. 

The easiest case is of course the "simple" supersymmetry, i.e. SUSY with one 
fermionic generator. To construct the representations of this algebra let us make 
use of the Wigner trick: Go to a fixed Lorentz frame characterized by a certain 
value of the four momentum Pu, and study the invariance group - -  the "little 
group" - -  of this vector. 
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Let us first investigate the massive case in which we choose the rest frame of 
the particle, P~ = (M, 0), M ~ 0. In this frame, the SUSY algebra (54) reduces 
to 

{Q~, Q--~} = 2MS~z. (78) 

Q. If we now define as  = j~-~, we have two ordinary fermionic creation and anni- 
hilation operators obeying the Clifford algebra 

{a., 4 }  = (79) 

all the other anti-commutators vanish. 
As is known from many-body theory, the irreducible representations of a Clif- 

ford algebra contain one vector [0) (the "Clifford vacuum") which is annihilated 
by all the as. (Because I0) is a one-particle state with mass M and a given spin 
it is of course not the vacuum state of a quantum field theory.) 

Acting with our creation operators on this "vacuum" we obtain four inde- 
pendent states, 

Io>, allo>, 41o>, t ,  alazl0 >. (80) 

Let us now choose the "Clifford vacuum" to have spin 0. Because the SUSY 
1 (see (66)), the above states can be interpreted as con- generators have spin 5 

taining one scalar, two fermionic and one pseudoscaIar degree of freedom, re- 
spectively. This irreducible representation is also known as the "chiral massive 
multiplet"; in the simplest form of SUSY-QCD, e.g., it is used to describe a (left 
handed) quark and its superpartner, the squark. 

Table 1. The N = l  massive multiplet 

1 spin 0 

nr. of states 2 2 

We also observe a very general result, valid for every SUSY representation 
of non-vanishing four momentum: The number of fermionic states (with odd 
fermion number NF) has to be equal to the number of bosonic states (with even 
fermion number). The proof of this theorem is based on the operator ( -1)  NF, 
whose trace measures the difference between the number of bosonic states and 
the number of fermionic states. It is clear that  it anti-commutes with the SUSY 
generators, 

(-1)NFQ  = N-, (81) 

and therefore, using the cyclic property of the trace, 

t r [ ( -  1) NF {Qa, Q~ }] = 0. (82) 



232 Notes by H. W. Grietlhammer, D. Lehmann, M. Seeger 

If we now insert the fundamental SUSY anti-commutator  (54) we obtain 

tr[(--1)N~Pu] = 0, (83) 

and, because the four momentum is fixed and non-vanishing, 

tr[(-1)/vF] = 0, (84) 

which proves the theorem. 
In the massless case we choose the frame with PU = (E, 0, 0, E)  as our 

reference frame. Because of 

( P o + P 3 P I - i P 2 ~  (00 0 ) (85) 
{V,-Q} = 2Pua t' = 2 ~ P1 + iP2 Po - 1:'3 ] = 4E 

only the component with a = 2 can be used as a generator; if we define a2 = ~2E 

we obtain only two independent states, 

10), a 10), (86) 

with helicities h and h + ½, respectively. 
As any Lorentz covariant, local field theory will exhibit P CT  symmetry, one 

has to include another doublet of states with opposite helicities. 
Choosing e.g. h = ½, one obtains the one-particle states of a massless vector 

particle together with a massless Majorana fermion. In QCD, this multiplet is 
called the "gauge supermultiplet" and contains the gluon and its superpartner,  
the gluino. 

Table  2. The N = 1 gauge multiplet 

1 1 1 helicity - 1 - ~ 

nr. of states 1 1 1 1 

We can now proceed to "extended" supersymmetry;  we will only be concerned 
with the case where the number/V of SUSY generators is equal to 2. Because it is 
antisymmetric,  the central charge matr ix  has to be proportional to the e-tensor, 

Z ' j  = e 0 Z.  (87) 

We may also observe that  our extended SUSY algebra possesses a new sym- 
metry, U(2) = SU(2) x U(1), acting in internal space. This symmetry  is called 
"7~-symmetry"; in non-extended supersymmetry it reduces to U(1). 

In the construction of the representations of the algebra, let us first consider 
the case of vanishing central charge, Z = 0. 
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In the massive case, one has 2N = 4 fermionic generators a~,  which can be 
used to create 2 2 N  = 16 states, 

10), a~t i0),..., allt a21t alSt a22t u~."' (88) 

If the Clifford ground state is again chosen to have spin 0, these states transform 
as five scalars, two Dirac fermions and one massive vector particle under the 
Poincar6 group, altogether yielding 16 physical degrees of freedom. 

Exact ly as above, in the massless case the number of independent generators 
is reduced by a factor of two, i.e. we have two operators a~ t and four states 

10), a~t[0), a2t[0), a~ta~tlO ). (89) 

1 and 1. With a spin 0 ground state these states have the respective helicities 0, 
Again the inclusion of the PCT-conjugate multiplet will be necessary to ensure 
Lorentz covariance. In this way we end up with the (in QCD terminology) so- 
called "N = 2 gauge multiplet" which consists of the gluon and its superpartners,  
two Weyl spinors and two scalars. The 7~- symmetry  acts on the two spinors 
which transform as a doublet while the other fields are invariant. 

Switching back to N = 1 language, we can decompose this multiplet into two 
N = 1 sub-multiplets: a chiral one containing the scalars and one of the spinors 
(which one doesn't  mat ter  because of A-symmetry)  and a gauge multiplet with 
the vector particle and the remaining spinor. 

Table  3. The  N = 2 gauge mult iplet  

1 0 1 1 helicity - 1 2 

hr. of states 1 2 2 2 1 

N -- 1 gauge multiplet 1 1 1 1 

N ---- 1 chiral multiplet 1 1 + 1 1 

We now turn to the case of a non-vanishing central charge Z which by a re- 
definition of the phase of the SUSY generators we choose to be real. Considering 
the massive case first, we change over to the linear combinations 

a~ = ~2(Q~t  + e~#Q~t), 

= - e , ~ Q ~  ), 

and obtain the algebraic relations 

(90) 

(91) 

{as, a~) = {b~, b~) = {a , ,  b~) = 0 (92) 
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and 

{ao,a~} = 2 8 ~ ( M  + Z), 

{b~,b~} = 2 6 ~ ( M  - Z). 

From the positive definiteness of the 1.h.s. we conclude that  

(93) 

(94) 

[Z I _< M. (95) 

If IZ[ ~ M, the algebra is isomorphic to the Z = 0, M ~ 0 case; the particle 
content is the same as constructed above. 

However, if ]Z I = M,  either the a's or the b's cease to be independent ope- 
rators and the one-particle subspace becomes 2 N = 4-dimensional. In this way, 
one can construct a "hyper-"multiplet  containing four scalar and four spino- 
rial degrees of freedom. The doubling of the degrees of freedom as compared to 
the N = 1 massive multiplet can be shown to be a consequence of the N = 2 
supersymmetry [3]. 

Table  4. The Hypermultiplet 

spin 0 ½ 

nr. of states 2 + 2 2 + 2 

In the massless situation one can show that  the central charge necessarily 
has to vanish [3], so there are no additional multiplets in this case. 

5 F i e l d  T h e o r i e s  B u i l t  o n  S U S Y  R e p r e s e n t a t i o n s  

In this section we are going to tackle the primary goal of our introduction, namely 
the formulation of supersymmetric field theory. The task consists of determining 
a multiplet of fields forming an (off shell) representation of the supersymmetry 
algebra for each of the SUSY multiplets relevant to us. Additionally, we have to 
construct supersymmetric Lagrangeans for them. One way to achieve this would 
be to start  with an arbi t rary  field contained in the multiplet of interest, apply 
subsequent SUSY transformations to it and identify the other fields belonging 
to the multiplet in what comes out. If necessary, one has to introduce auxiliary 
fields to enforce the transformations to close (this reflects the fact, tha t  we are 
dealing with off-sheU representations; once having constructed the Lagrangean 
one knows the equations of motion and can eliminate the auxiliary fields with 
their help to gain an on-shell representation). For details and examples of this 
procedure we refer to the l i terature (e.g. [1], [2], [3]) and leave it as an exercise to 
the reader. We will present a more elegant and powerful method of facilitating 
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this task, namely the use of superfields. To keep things as transparent as possible, 
we restrict here to simple (N = 1) supersymmetry. 

In both approaches it is advantageous to turn over from the algebra to a 
group by exponentiating the generators. However, in a graded Lie algebra one is 
faced with a problem: the appearance of anti-commutators seems to rule out the 
application of the Baker-Campbell-Hausdorff formula which in turn is necessary 
to prove that  subsequent transformations do not leave the group manifold. The 
problem is solved by the introducing Grassmann valued, spacetime independent 
Weyl spinor parameters 0 ° and 0a = 0~ which multiply the fermionic generators, 

O Q = O  ° Q a  , O Q = O ~  . (96) 

By definition, they satisfy 

{0~,0~} = {0, ,0~i}  = {0a,09 } = 0 . (97) 

Additionally, they commute with all bosonic SUSY generators B and anticomm- 
ute with all fermionic ones 9 c, 

[ 0 , , B ]  = 0 , { 0 , , ~ }  = 0 . (98) 

With their help, the supersymmetry algebra can be rewritten entirely in terms 
of commutators,  e.g. 2 

[ O Q , ~ Q ]  = [OQ,~Q] = o , 
(99) 

[OV,~--O] = 2 (Oa~,-~) P "  , 

defines a closed sub-algebra, where the ~ are another set of Grassmann parame- 
ters. Group elements of this "Lie group with anti-commuting parameters" are 
gained just as in ordinary Lie groups by exponentiating the algebra 

V(x ,  0,-0) = exp (i 0 Q + i 0--Q + i x. P)  , (100) 

and the Baker-Campbell-Hausdorff formula, 

1 
exp(A) exp(B) = exp(A + B + -~[ A , B  ] + . . . )  (101) 

may now be invoked to determine the motion in parameter  space under a (left) 
multiplication with a group element G(y,  ~,~): 

o, : o ' ,  

x 'u = x u + y~' + i ~ a " - 0 -  iOa ~' ~ , (102) 
O' = 0 + ~ ,  

2 We use here and in the following the short hand notation Oa.~ = 0 ~ (au)~  ~B, which 
transforms under Lorentz transformations like a Minkowski four vector. 
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Note that  the higher order contributions in (101) (indicated by the dots) vanish 
identically in this case. The parameter space, given as the direct sum of the 
four dimensional Minkowski space and the four dimensional manifold spanned 
by the Grassmann parameters 0 a, ~b' is referred to as superspace. A function 

S(x, 0,-0) defined on superspace is called a superfield. It can be expanded into 
a power series with respect to 0 and ~ which truncates at finite order due to 

--2 
92~ = 0, Of} = 0. The coefficients of this expansion, referred to as component 
fields, are ordinary fields depending on spacetime. Thus, a superfield might be 
understood as a collection of certain component fields. It is not too difficult to 
convince oneself that  the most general Lorentz scalar superfield is of the form 

s (x , e ,Y )  = c(~) + o¢(x) + e~(~) + ee m(:) + e-~.(~) 

+8a"~ At,(x ) + 88 8---~(x) + 8---0 8¢(x) + 8~ 8--~ d(x) , 
(103) 

containing the complex Lorentz scalar component fields c(x), re(x), n(x) and 
d(x), the (½,0)-spinor fields ¢(x) and ¢(x),  the (0, ½)-spinor fields ~(x) and 
~(x) and the complex Lorentz vector field Au(x), so altogether 16 bosonic (off- 
shell) degrees of freedom and an equal number of fermionic fields illustrating 
the "fermions = bosons" rule. The mass dimension of Q and Q is fixed by the 
SUSY algebra to the value one half, see (54), which in turn implies the mass 
dimensions 

1 
[/9] = [~] = - ~ (104) 

for the Grassmann parameters since OQ and OQ must be dimensionless quantities 
in (100). So, in general component fields of higher powers in 0 and ~ will either 
have higher mass dimensions or be spacetime derivatives of fields with lower 
mass dimension. 

According to (102), a SUSY transformation acts on a general superfield like 

G(y",~,~)S(x~',e,-~)--S(x" +yO +i~aO~-i(~a~'~,$+(,8+~) . (105) 

Considering an infinitesimal transformation by Taylor expanding the r.h.s, yields 
a linear representation of the generators Q~, Qh and PU as differential operators 
on superspace: 

P. = i 0 .  

a 
iQ~  = oe-- ~ + i ( ~" ) .~  a .  , 

0 

It is easily checked that  they indeed fulfill the SUSY algebra (54), (57), (58). 

(lO6) 
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We define the fermionic derivatives 

0 
D o -  08 ~ i (a  ")a~ ~ 0 ~  , 

o (107) 

which also satisfy the algebra 

{On, D ~ } = { D a , D  E } = 0  , (108) 

{Da,-D~} = 2i(a")~0~ ; (109) 

they are (supersymmetry-)covariant, since they anticomm-ute with all SUSY 
generators: 

{Da,Q~}= {D~,-O~}= {-D~,Q~} = {D~,Q~}=O • (110) 

Superfields are a linear representation of the supersymmetry algebra in the sense 
that products and linear combinations of superfields are again superfields. Ho- 
wever, a general superfield will be a reducible representation. To gain a specific 
irreducible representation, i.e. a specific supermultiplet, one has to impose ap- 
propriate, SUSY covariant constraints on the superfield which eliminate certain 
component fields. 

5.1 Chlral  Superfields 

The simplest irreducible N = 1 SUSY representation is the chiral supermultiplet 
consisting of (left handed) spin 1/2 Weyl spinors and their supersymmetric spin 
0 partners. It is described by a chiral superf ie ld  ~ ( x ,  8, ~), which is defined by 
the covariant constraint 

Da $(x, 8, ~) = 0 . (111) 

This constraint can be simplified by transforming to the new coordinates y~ = 
x ~' - i 8a~'~, 8 and 0, where it takes on the form 

0 
0 7  8, = 0 ; (112) 

obviously, the most general solution to (112) is an arbitrary function of y" and 
alone and given by the 0-expansion 

~ ( y , 8 )  = ¢(y) + v~8¢(y) + 8 B E ( y )  ; (113) 

we assumed here that the chiral superfield is a Lorentz scalar quantity since 
we are interested in a chiral multiplet containing a Lorentz scalar (spin 0) field 
as the component field with the lowest mass dimension. In principle one could 
build up the chiral muitiplet on top of a higher spin state, leading to a superfield 
transforming according to a higher spin representation of the Lorentz group. 
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An example for this case is the field strength super field discussed later in this 
introduction, which then carries a Weyl spinor index. 

Transforming back to the original coordinates (x, 8, ~) in (113) yields 

• (x, 8, ~) = ¢(x) + v~8¢(x)  + 88 F(x)  - i Sa"-~ 0~¢(x) 

i 1 
+ ~  800,¢(~1o"~ - ~ 88 ~ 0 , 0 "  ¢(x) . 

(114) 

Note that the constraint (111) did only restrict the number of component fields 
compared to the most general Lorentz scalar superfield (103) but not their space- 
time dependence. 

The Hermitean conjugate ~t (x, 8, ~) of a chiral superfield is called antichiral 
superfield and satisfies the constraint 

D~ ~t(x,8,0) = 0 . (115) 

Under an infinitesimal SUSY transformation, the chiral superfield is changed by 
an amount 5~, 

• (x, O, ~) -~ ~(x, O, ~) + 5~(x, e, ~) , 
(116) 

5~(x,  O,-~) = i (~ Q + -~-Q) ~(x ,  8,-~) . 

Inserting (106) and the expansion (114) allows to identify the variations of the 
component fields: 

= 

5¢,(x) = v ~ F ( x )  - i v~ (a')a~} ~ 0" ¢(x) , 

5F(x)  = i x/20~, ¢ (x )  a" ~ . 

(117) 

An important observation, true for any superfield, can be made in (117): The 
component field with the highest mass dimension, in this case the 190- or F-term 
F(x) ,  transforms into a total derivative so that its spacetime volume integral is 
SUSY invariant. This will be of relevance in the search for possible candidates 
for Lagrange densities. 

5.2 Vector  Superfields 

A vector superfield is defined through the constraint 

y (x ,  = v*(x,  e ,  , ( 1 1 8 )  

which is covariant due to the unitarity of SUSY transformations (100). A glance 
at the general Lorentz scalar superfield (103) shows that there is exactly one 
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complex Lorentz vector component field present which is rendered to be real by 
the constraint. Other consequences of (118) are 

c(x), d(~) e n ~ ,  

¢(x) = x ( z ) ,  

m*(x) = n(x) E C , 

~(x)  = ¢ (x )  , 
(119) 

in the notation of (103), so that  the number of off-shell degrees of freedom is 
reduced by a factor 2 compared to the general scalar superfield. Trivial rewriting 
and implementing the constraint yields the standard form of a vector superfield: 

V(x,  0,-~) : C(x) + i Ox(x) - i ~ ( x )  + Oa~'-O At,(x) 

i 
2 -~ [ M(x)  iN(x) ] + 2  08 [ U ( x )  + iN(x)]  - 

(120) 
i a~  0~ ~ ( x ) ]  + i 08 O[ X(x) - 2 a~' 0~, X(x) ] - i 0-0 8[ A(x) - 

- -  1 0 ~' C ( x ) ]  + 1 8 8  88 [D(x) - ~0 .  

With a bit of work one can determine the transformation properties of the com- 
ponents under infinitesimal SUSY transformations starting from 6V = i ( ~Q + 
~Q ) V, e.g. 

~c(x )  = i ( ~x(x) - ~x(x) ) ,  

1 (~.~). ~ F.~(x) , 6Aa(x) = i D ( x ) ~  + 

5A~(x) = i (~a~.X(x) - A(x)a.~)  + 0 .  (~X(x) + ~--X(x) ) , 
(121) 

6D(x) = O. (¢a'- f (x)  + A(x)a"~) , 

where F ~ ( x )  is the U(1) field strength tensor, F ~  = 0 .  A~-O~ Ag, transforming 
like 

6F~. (x) = i 0 t, (~o'v~(x) - A(x)a~.~ ) - i a~. (~a~-f~(x) - A(x)at,~ ) • (122) 

Thus, it follows that A~, ~ ,  Fu~ and D form the desired irreducible representa- 
tion of the supersymmetry algebra, namely the vector or gauge supermultiplet. 
Moreover, the component field with the highest mass dimension, the 80 88- or 
D-term D(x),  transforms into a total spacetime derivative. 

Starting from the observation that  given a chiral superfield A, D~ A = 0, 
one can a construct a particular vector superfield by forming the combination 
i ( A - A t ) we define a U(1) gauge transformation of a vector superfield V by 

V(x,O,-~) --+ V(x,O,-~) + i  ( A(x,O,0) - At(x,O,-O) ) (123) 



240 Notes by H. W. Griet3hammer, D. Lehmann, M. Seeger 

By inserting the 0-expansions (120) and (114) we deduce the behavior of the 
component fields under this gauge transformation (123): 

A u --+ A u + 0 u (cp + (a t) , (124) 

As --+ ~, , (125) 

D -+ D , (126) 

C -~ C + i(¢ - ct) , (127) 

X ~ X + v ~ ¢  , (128) 

M + i N  -+ M + i N  + 2 F  . (129) 

The vector field A u has indeed the desired transformation property (124). The 
fields belonging to the vector supermultiplet, A~, A~, D and the field strength 
Fuv are gauge invariant, whereas the component fields C, X, M and N are 
gauge variant and may be eliminated by an appropriate gauge choice. The Wess- 
Zumino  gauge is defined by 

C = 0  , X = 0  , M = 0  , N = 0  (130) 

and still allows for arbitrary gauge transformations of the vector field A u. In this 
gauge, the vector superfield takes on the simple form 

Vwz(x,O,-8) = 8aU-SAu(x ) + iO00--A(x) - iO--88A(x) + ~ 80-~D(x) . (131) 

with the powers 

V~vz(x ,O,8 ) = 10{? ~ A u ( x )  AU(x)  , V~vz(x,O,-8 ) = 0 (n > 2) . (132) 

Note, however, that fixing the Wess-Zumino gauge breaks SUSY invariance. 

5.3 Lagrangeans for Chiral Superfields 

We are now going to construct renormalisable supersymmetric Lagrangeans in- 
volving chiral superfields ~,(x, 0,0), where the index i labels the various chiral 
superfields in the theory. As we have seen in the previous sections, the 00- or 
F-term of an arbitrary chiral superfield ~, in the following denoted by ~lee, and 

the 0000~- or D-term of an arbitrary vector superfield V, denoted by V i s e D ,  
are SUSY invariant up to total spacetime derivatives and thus good candida- 
tes for supersymmetric Lagrange densities. Formally, these components may be 
projected out by appropriate Grassmann integrals: 

(133) 

(134) 
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where we defined the measures 3 

1 d ~  d0 ~ e ~  • (135) d 2 0 = -  d 0 ~ d 0 ~ e ~  , d 2 0 = - ~  

Given chiral superfields 4~i(x, 0, 0) any product of them will again be chiral due 
to the linearity of the operators D~. Their 00-components are given by 

f d20 ~i = Fi , 

f d204~ j  = ~ F j  + c~jF, - ¢~¢j , 
(136) 

+ 

- ¢ , ~ j C k  - ~ , ¢ k C j  - C j ~ k ¢ ~  - 

Higher powers of #i need not be taken into account, since their 08-components 
would have a mass dimension greater than four and therefore would lead to non- 
renormalisable expressions (note that 00 itself has mass dimension- 1). The most 
general superpotential W(~) then reads 

1 1 
W ( ~ ) =  E A,~i + ~  -~mi j~ i~j+~-~ -~9#~i4~j~k , (137) 

i i j  i j k  

with symmetric coupling constants mij and 9qk- The combination ~ i  is Her- 
mitean and thus a vector superfield. Its 88 80-component, 

(13s) 
i i 

contains spacetime derivatives of the relevant component fields and therefore 
serves as kinetic part of the Lagrangean. So, altogether, the most general re- 
normalisable supersymmetric Lagrangean that can be constructed from chiral 
superfields only is given by 

, (139, 
i 

or in terms of component fields and neglecting surface terms 

: 0 .¢~0.¢,  + i ~ , ~ . 0 . ¢ ,  + 8 F ,  + (~,F, + m.  £ 
(140) 

-½m~ ~¢~  + ~,~ ¢~¢~F~ - ~,~¢,¢j¢~ + h.c.) , 

Remember that a Grassmann integral is defined by f d O  ~ 0 ~ = 5 ~ and ~-lineaxity; 
it is equivalent to the derivative: f dO ~ f(O) = ~ f(O). 
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where a summation convention is used. We now see that there is no kinetic term 
for the F-field present, indicating that this field is an auxiliary field and may 
now be eliminated with help of the equations of motion following from (140). 

5.4 Supersymmetric  Gauge Invariant Interactions 

The simplest supersymmetric gauge theory is the SUSY-Maxwell theory; the 
supersymmetric extension of the vector field A u is a vector superfield V. 

The field strength belonging to this vector field should, of course, be invariant 
under gauge transformations 

V 

One may easily check that 

V + i(A - At). (141) 

W~ = - ¼ D D D ~ V  (142) 

fulfills this condition. It is also chiral, 

D~W,~ = 0, 

because the product of three D's vanishes identically. 
The component representation of this field is given by 

W,~ = -i)~,~(y) + O~ [5~D(y) - ~(au-5~)~Fuv(y)] - 

where 

(143) 

•Maxwel, : ~ d20 WaWa + "~ d20 W& Wci : 

i ~'+ -- 
= ~ D 2 - ~ F u u F " V  +-~Ao'UOuA, 

Fu~, = O~,A,, - O~,A u (145) 

is the well known Maxwell field strength. To obtain the Lagrangean density, one 
has to take the square of this object and to pick out the component quadratic 
in 0. This can be achieved by a simple Grassmannian integration: 

(146) 

which transforms as a density under SUSY transformations, is therefore the 
supersymmetric generalization of the free Maxwell Lagrangean. In this equation 
we have used the symbol 

+-~ 

AOuB = AOuB - (OuA)B. (147) 

- OOa~,~O~,k (y )  (144) 
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There is a second Hermitean supersymmetric combination of the field 
strengths, 

le,~,~,,r'~xF"~' - 20,(Aa"A), (148) 

which breaks parity. This combination can be written as a total divergence and 
therefore does not appear in the usual SUSY-QED Lagrangean because it does 
not contribute to the equations of motion. However, it plays an important r61e 
in the effective action of SUSY-QCD in the context of 0-terms. 

The generalization containing the 0-term can easily be written down if we 
define the complex coupling constant 

4ri 0 (149) 
T=--~-+-- .2r  

We obtain 

= [T f W Wo] ~ D 2 1 F ~ , F  "" i ~ - £o ~-~Im = - + -~Aa~'O~,A - 

Og2 (~e,,~,,F'~F~'-O~,(Aa~'-X) (150) 
16r2 

where we have used the imaginary part notation for later convenience. 
The coupling of the supersymmetric Maxwell theory to matter, e.g. to a chiral 

superfield ~, can be introduced in a way which is very similar to ordinary QED: 
Under the gauge transformations 

q5 ~ e-2iqA~5, (151) 

where A has to be chiral to ensure that the r.h.s, is also a chiral superfield, the 
kinetic term in the Lagrangean behaves as 

~?~ ~ ~St~e2iq(At-A), (152) 

and is therefore not gauge invariant. 
The minimal supersymmetric gauge invariant extension of this Lagrangean 

may be obtained by simply replacing 

~t~ ~ ¢te2qV¢. (153) 

As before, the correct SUSY transformation law is only obeyed by the part 
which is quartic in the Grassmann variables. Picking out this one, we obtain the 
minimally coupled kinetic part of the matter Lagrangean 

d20 d20~Ste2qV~5 = (D,¢)tD•¢ + ~¢a"D~,~b + F*F + 

+ix/2q(¢*¢A - ~-A) + qD¢*¢ (154) 
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with the covariant derivative 

I)~ = 0~, + iqA, .  (155) 

Our next task is to generalize this construction to non-Abelian gauge groups. 
Consider the behavior of a matter field in the fundamental representation under 
a gauge transformation, 

4 i ~ e-2igA~, (156) 

where A has to belong to the adjoint representation, 

A = AaT ~. (157) 

Here the T a are the generators of the gauge group, obeying the Lie algebra 
relations 

[T ~, T b] = it~bCTC (158) 

tr[T~T b] = 15~b. (159) 

and the orthogonality condition 

For the term #te2gV~ to be gauge invariant, the exponential of the vector field 
must transform as 

e 29V ---+ e-2igate2gYe 2igA. (160) 

Here we have defined the super Lie algebra valued vector field 

V = V a T  a. (161) 

Taking the logarithm of this equation in a closed expression is not possible, but 
expanding in powers of A one obtains for the Lorentz vector component of V 

A~ ~ A~ + 0~,(t3 a + B at) + gtabc(]3 b + ~bt)A~ + O(A 2) (162) 

if 13 denotes the scalar component of A. This is of course the well known expres- 
sion for the gauge transformation of a Yang-Mills field. 

Exactly as in SUSY electrodynamics, the minimally coupled part of the mat- 
ter Lagrangean is obtained by picking out the term which is quartic in the 
Grassmann variables, 

/ /  d20 d28~te29Vo = (:D,¢)t/)"¢ + ~¢a"7) ,¢  + F * F  + 

+ix/2g(¢tT~OA ~ - ~ ¢ T ~ ¢ )  + g D a ¢ t T a ¢  (163) 

with the covariant derivative in the fundamental representation 

7:) ~ = O, + igA~T% (164) 

Because the derivatives of D do not appear in the Lagrangean, it is an auxi- 
liary field which can be eliminated by a Gaussian integration. (In the canonical 
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formalism one would simply insert the equation of motion for D.) The result is 
a potential for the scalar field ¢, 

U = ~g2(¢tTa¢)2, (165) 

the so-called superpotential. 
Note that this potential is uniquely fixed by the requirement of supersym- 

metry. 
If supersymmetry is unbroken, the vacuum has zero energy. Therefore also 

the potential energy of the scalar has to vanish. 

CtTa¢ = O. (166) 

One can always find the trivial solution 

¢ = o. (167) 

The non-zero solutions of vanishing potential energy are called "flat directions". 
If, e.g., ¢ transforms in the adjoint representation of SU(2), 

~)t Ta ~) = cabc obt ~) c, (168) 

one such flat direction would be given by 

Cb = ~b3~. (169) 

We can conclude that, like e.g. in the Goldstone model, we have a range of 
(classical) vacua, each one characterized by a certain value of ¢. But unlike the 
Goldstone model, the different solutions are not related by symmetries; they lead 
to different physics, observables like the spectrum or correlation functions will 
depend on ¢. 

So far we have not yet constructed a kinetic term for the super-Yang-Mills 
field V. A natural requirement for its field strength is that it should transform 
covariantly under gauge transformations. To find such an object, consider the 
transformation property of the following expression: 

e-2gV Dae 2gv ----+ e-2igA(e-29V Dae2gV)e2igA + e-2igADae 2igA. (170) 

The first term on the r.h.s, looks covariant; the second term contains only chiral 
superfields and is therefore annihilated by the operator D. This leads us to the 
ansatz 

W~ = - 1-D---De-2gV D,~eZgV, (171) 
8g 

which reduces to the SUSY-Maxwell expression in the case where everything 
(anti-)commutes. 
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A SUSY transformation on W~ results in the transformation laws 

= + a  ~F; ,  

(172) 

for the component felds. The supersymmetric Yang-Mills theory is therefore 
based on the Lagrangean density 

1 f d20 tr[W~W~ ] + h.c. = I =  

i ~-~ .--a 
= 1 D ~ 2 -  ~F~, ,F m''~ + ~A~auDuA (1731 

where we have defined the covariant derivative in the adjoint representation 

D ~ b  ---- Ou6ab _ 9~.acb--e.~ll a (174) 

as well as the non-Abelian field strength 

..bc--b - - ¢  (175) t7~,, = OuA~ - O,,A~u - 9~ "~u'%" 

This Lagrangean contains the usual three and four gluon couplings as well as a 
gluon-gluino-vertex. 

We now turn to the N = 2 SU(2) gauge theory. As we have seen in Sect. 4, 
the N = 2 gauge multiplet can be decomposed into an N = 1 gauge multiplet 
(A~, A~) and an N = 1 chiral multiplet (¢~, ¢~) (a = 1, 2, 3). 

The N = 2 super-Yang-Mills Lagrangean is therefore given by an N = 1 
super-Yang-Mills Lagrangean minimally coupled to a N = 1 chiral multiplet in 
the adjoint representation. It reads: 

i + ~ . - ~  i ++ -:-a 
f_.~M 2 = - ~ F u , , F m ' "  + ~A"a~'DuA + ~¢"aUDu¢ + 

(Du¢)"i:Du¢" + +v/2geabc(¢"tcb)J + h.c.) + 
÷92( ( .abcq~b?¢c) t~ade~gd t¢  e . (1761 

The two supersymmetries can be obtained by using the SU(2) 7~-symmetry ac- 
ting on (A, ¢) together with the N = 1 transformation laws (172). One deduces, 
e.g., 

6~F~,, = i[~la, ,Du'~ + ~lY, ,DuA ¢' + ~2a,,Du¢ a + ~2Y~Du¢ ~] - (# ~ v). (177) 

In addition to supersymmetry, this Lagrangean has even more symmetries, the 
so-called "7~-symmetries", mentioned already above. It is invariant under an 
SU(2)~ acting on (A, ¢) as well as under the replacements 

U(1)j : 4~(0) ) 4~(e-ia0) (1781 

and 
) e 2 i / 3 ~ ( e - i B O )  

e(0) (179 / 
U(1)~ : W~(O) ) ei~Wa(e-iZ0) ' 

if one denotes by • the N = 1 chiral superfield containing Ca and ¢ and by Wa 
the vector superfield strength, i.e. the chiral superfield containing A u and As. 
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6 The Structure of N = 2  Supersymmetric 
Yang Mills Theories 

Our main purpose is to describe the exact quantum behavior in the infrared 
of the N = 2, SU(2) supersymmetric Yang Mills theory found by Seiberg and 
Witten. We will first discuss separately the "ingredients" used in the solution 
and then proceed to the actual construction. 

6.1 Lagrangean  and  Supe ra lgeb ra  

It is useful to define )~ =: ~1, ¢ =: ~2 and rewrite the Lagrangean (176) as 

£: = - ~ tr [F~'~]2 - 2itr [~itO~:D~i] + 2 tr [(:D~'¢) t ( :D~¢)]- (180) 

j 

where the trace is taken in the adjoint representation of SU(2). 
A nice exercise is to calculate the conserved supersymmetric Noether current 

from the transformation properties (177) of the fields [9] 

S~(x) :tr[vr2Fp~aP~a.~'+ 2e i¢( :Pv¢)a~a~  ~ + 2v / ]g [¢ ,¢ t ] a .~ i ]  . (181) 

Using the canonical (anti-)commutation relations, one may test that the super- 
symmetry algebra is indeed fulfilled and show that the central charge (57) is 
given by 

where E~ = F °~ a is the colour electric and B~ = 1 ~.ijkpjk a ~ _ the colour magnetic 
field. In order the total surface integral Z to be nonzero and the algebra to be 
extended, the theory has to allow for finite energy configurations which fall off 
slowly at infinity. We will investigate more closely their existence in the next 
sections. 

6 . 2  S u p e r s y m m e t r i c  Q C D  as  H i g g s  M o d e l  

As seen in (55), the vacuum has zero energy in a theory in which supersymmetry 
is not broken. Hence, ¢ has to be a constant in spacetime, so that the kinetic 
terms in the Lagrangean (180) are zero, and the superpotential has to vanish in 
the classical vacuum: 

tr [¢,¢t] 2- : 0  (183) 

Whenever ¢ and Ct commute with each other, i. e. are aligned, and hence ¢ 
and Ct lie in the maximal Abelian subalgebra of SU(2), this equation holds with 
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nonzero vacuum expectation value of the scalar field. These directions in the Lie 
algebra space are are called f ia t  direct ions:  

(vaclCb(x)lvac) = a~b(x) , Sb[]~bt (184) 

a2=¢2 n e e  , O.a  = O " Sb Cb 
a 

Note that  the choice of ¢(x) at every spacetime point corresponds to a choice 
of gauge. The (nearly) gauge invariant eigenvMue a of the vacuum field configu- 
ration is an arbitrary, x-independent complex constant, and the vacuum breaks 
a symmetry of the Lagrangean spontaneously by developing a nonzero vacuum 
expectation value a. This hint for a Higgs mechanism parallel to the one in the 
standard model suggests to investigate the residual symmetry group the broken 
vacuum state allows for. 

For given ¢, (184) fixes the gauge partially for nonzero a, since it permits 
only two kinds of residual gauge transformations: The first kind is a U(1) group 
exp iga a (x)~a (x) with arbitrary gauge function a a (x) and corresponds to rotati- 
ons about the ¢ axis in colour space at each spacetime point. The second kind is 
given by the Weyl reflection group }IV of SU(2) and describes rotations in colour 
space such that  the direction ¢ points to in the Lie algebra space is reversed. 

The analysis becomes more familiar in the U gauge [5], [10], in which the 
field ¢ is diagonal, 

if3 
= , ( 1 8 5 )  

and which may be reached by diagonalizing ¢ at every spacetime point. Then the 
U(1) part of the residual symmetry group is given by all functions exp igc~(x) a3 T 
with arbitrary (~(x) and by the Weyl reflection group (~, R := ia2}. R describes 
rotations around the a 2 axis about the angle r and reflects the arbitrariness 
one has in the ordering of the eigenvalues, R a 3 R  t = - a  3. Under this trans- 
formation, a reverses sign, and therefore the expectation values a and - a  have 
to be identified. The correct gauge invariant parameter differentiating between 
different flat directions is hence (at least locally) 

u := tr ¢2 1 2 (186) ~ a  , 

and w. r. t. this variable the residual gauge group is U(1). Nonetheless, it will be 
more convenient in what follows to work with a as variable labelling the different 
vacua. 

In the standard language, the original SU(2) gauge symmetry "breaks down" 
to U(1) because of the nonzero vacuum expectation value a, and as in the stan- 
dard model one expects the Higgs mechanism to give mass to two charged vector 
mesons, leaving the gauge boson which lives in the a 3 (respectively ¢) direction 
massless. Indeed, expanding in the U gauge about the classical vacuum, 

¢ = aa-~ + ¢ , (187) 
Z 
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the kinetic energy term of the scalar fields, 

2tr [ (7) ,¢) t  (7) '¢)] : g21a12[(A~)2+ (A2) 2] +. . .  (188) 

1 1 i A~) of charge one w. r. t. the shows that the offdiagonal fields W~ := ~ (Au ~: 

residual U(1) symmetry acquire semiclassically a mass m 2 : 2g21al 2. At least 
different values of lal 2 will hence label different vacuum sectors of the theory. 

One obtains a Lagrangean similar to the supersymmetric version of the Ge- 
orgi Glashow model [5], [10], SU(2) Yang Mills theory with a real Higgs field 
¢ in the adjoint representation of the gauge group. From the SUSY mass re- 
lation between particles in the same multiplet (O'Raifeartaigh's theorem) (57), 
one concludes that all the offdiagonal fields 1 2 ~1,2, ¢i,2 A,, , acquire the same 
nonvanishing mass for nonzero a, and only the "photon" A~ together with its 

supersymmetric partners stays massless. In general, ¢ prescribes in a gauge in- 
variant manner the direction in the Lie algebra space at each spacetime point in 
which the electromagnetic field lives, 

e m  ~b b F;~ := ¢ F;~ . (189) 

We will not bother to write down the (lengthy) interactions between massive 
and massless as well as amongst the massive fields induced by the spontaneous 
symmetry breakdown, since they will not play a role in what follows. 

Classically, the U(1)n symmetry (179) changes the phase of the Higgs field, 
and hence shows that only the length lal of the Higgs field is relevant. The 
classical moduli space of infinitely many physically inequivalent ground states 
(flat directions) is therefore the half line lal E [0; oo[ of real dimension one. 
Different values of lal yield indeed different masses for the charged gauge bosons. 
For a -- 0, additional particles become massless and one expects therefore that 
the classical moduli space has a singularity. 

One can show that the flat directions remain flat when one takes into account 
quantum corrections. The quantum moduli space of infinitely many, physically in- 
equivalent ground states will nonetheless change drastically, because the classical 
U(1)n symmetry (179) is broken in the quantum theory due to nonperturbative, 
instanton, effects to a 774 symmetry which maps a to ±a ,  :t=ia. For u, which is 
the better variable to take to describe the quantum moduli space, the symmetry 
is broken to 772, identifying u and -u .  Therefore, the quantum moduli space 
is labelled by the complex value u and will now be of complex dimension one. 
Different u,  u' ~ ±u yield different masses and correlation functions, and hence 
different physics. The occurence and position of singularities in the quantum 
moduli space can differ drastically from the classical one, as will be demonstra- 
ted below, but the system will still be in the Higgs phase for nonzero a. The 
base manifold of u is the right half of the complex plane, and this will prove 
very powerful in the analysis of the theory. In contradistinction to the Georgi 

1#2¢a¢a _ ¼A(¢a¢~)2 and the Glashow model, in which the Higgs potential is 

vacuum manifold of flat potentials is given by all fields with length a = v/'2p/V~, 
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i.e. by the 2-sphere S 2, in the SUSY model it is much larger: Any value of a 
yields a flat direction. 

Therefore the effective low energy theory of N = 2 supersymmetric pure 
SU(2) gauge theory, which is given by integrating out the heavy modes propa- 
gating only over short distances, is N = 2 supersymmetric QED. The Georgi 
Glashow model is embedded in pure N = 2 Yang Mills theory and hence can give 
valuable hints for SUSY QCD. The light fields dominate the long range behavior 
and therefore are also the relevant degrees of freedom w. r. t. the central charge 
(182). Z is nonzero in the Higgs phase because fields approach their vacuum 
value at infinity, lim ~-~oo ¢~ (x) = a¢ a (x). 

6.3 Cen t ra l  Charge  and  Topology 

ff there exist physical particles which are not the fundamental fields, W + and 
the photon( with their SUSY partners) or their bound states, the Hilbert space 
is larger than the one that can be reached by perturbation theory about the 
trivial vacuum. Indeed, topology shows that the Hilbert space of the quantum 
theory decomposes into disjoint sectors not only of different electric, but also of 
different magnetic total charge, and of different values for an effective 0 vacuum 
angle. 

Magnetic Monopoles The second term in (182) measures the total magnetic flux 
through the surface at infinity and hence will be nonzero only in the presence 
of monopoles. At first sight, this seems to be ruled out because the naive QED 
magnetic field is divergence free thanks to the Bianchi identity, 0iB e m =  0. 
Because of the nontrivial dependence of the magnetic field on ¢ as it is defined 
in the Higgs phase (189), it will indeed not obey the Bianchi identity of QED 
and magnetic monopoles may occur, although the non-Abelian Bianchi identity 
~D abRb = 0 is valid. This should not come as a surprise, since our guide, the i - - i  
Georgi Glashow model, is known to allow for finite energy solutions of nonzero 
total magnetic flux, namely the 't Hooft Polyakov monopoles [11]. 

Their strength can be derived from topological arguments: ¢ can approach 
any vacuum expectation value a¢ at infinity,^and ~t must be aligned to ¢. In 
order to obtain all inequivalent configurations ¢, the electromagnetic gauge ~roup 
has to be factored out since - as already mentioned - rotations about the ¢ axis 
leave it invariant. Therefore, ~ at infinity can have any value in SU(2)/U(1). 
Gauge inequivalent configurations exist, if arbitrary ¢(x) cannot be rotated to 
point into the same direction in colour space on the whole sphere S 2 at spatial 
infinity. Such gauge transformations which continuously diagonalize every q~(x) 
are not present in general since the mapping which defines the diagonalization, 
i.e. the alignment of the vacuum expectation value of the Higgs field at infinity, 
D : S ~ -+ SU(2)/U(1), decomposes into infinitely many distinct equivalence 
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classes 4, each of which is labelled by an arbitrary integer winding number 

n m = ~ g  i d2~i Bi"¢" e Z .  (190) 
* ]  

S2at oo 

The central charge (182) of monopoles is therefore given by 

Zmo.opole v~a 4ri --- n m ,  (191) 
g 

and the resulting quantization condition for electric and magnetic charges, gm E 
a~77 is twice the quantization condition of the Dirac monopole. This can be g ' 
traced back to the fact that there are no fields present which transform under 
the fundamental representation of SU(2) [5], [10]. 

As we will discuss in the following, due to the asymptotic freedom of the 
theory, for large a we are in the semiclassical regime. In this region monopo- 
les can be reliably constructed as field configurations following the solution of 
Bogomolnyi, Prasad and Sommerfield for the Georgi Glashow model [14]. One 
starts in a gauge in which all fields are time independent, 0oA~ = 0 ,  a0¢ -- 0. 

When ~b is real, the Higgs potential vanishes ([¢, ~b~] = 0) and therefore ~b lies in 
the moduli space automatically. From the bosonic part of the total energy of a 
static field configuration without colourelectric fields (E~ = 0), one can show by 
the Bogomolnyi trick 

)' ( ) ( ) ]  E : =  dax B~ + 7)i¢ T)i¢ = 

(192) 

(using the non-Abelian Bianchi identity) that the energy, and hence the mass of 
the static monopole has a lower bound (called Bogomolnyi bound) 

? Mmonopole  ---- E > v~ia n m l  ~- IZmonopolel • (193)  

The monopole will be stable when E is minimal. For monopole charge one, the 
Higgs field should be mapped with winding number one to the sphere at infinity, 
which suggests the hedgehog ansatz ¢"Hx a for it, and the magnetic field should 
fall like 1/r 2 at infinity. The Wu-Yang-'t Hooft-Polyakov-Julia-Zee ansatz alignes 
also B~ and ¢": 

A~ = ~" . x_jj ['1 - K ( r ) )  lim K(r )  = 0 
s~ gr2 ~, ' r - - * o o  

xau" X" 
¢ =  2 - -~  H(r )  ' r-~lim ¢ = a S " - - r  " 

4 More on topological considerations can be found e. g. in [5], [10], [12], [13]. 

(194) 
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Minimizing (192) to obtain the stable solution, the following equations of motion 
result 

r2K '' = K ( K  2 - 1) + K H  2 

r2H '' = 2 H K  2 
(195) 

(primes denote differentiation w. r. t. r) which are solved by 

K ( r ) -  gar I I + O ( ( g a r )  2) f o r r - + O  

sinh gar ~ ( gar e -gar for r -+ oo 

I O((gar) ) for r --~ 0 
H(r) = gar coth(gar) - 1 - -~  ( gar for r -+ ¢x~ 

(196) 

(assuming a > 0) and constitute an exact solution for the 't Hooft Polyakov 
monopole in the limit of vanishing Higgs potential with v/-fi/A = 1 fixed. The 
solution is regular everywhere and has size 1/ga. The gauge invariant QED- 
magnetic field at infinity is indeed 

Xi Bi-+ ~ f o r r - + c o  , (197) 
gr ~ 

and the BPS monopole saturates the Bogomolnyi bound 

M B P S  = v~la~nml • (198) 

We remark that this relation coincides with the condition (95) between masses 
and central charges for small representations of the SUSY algebra. Therefore, the 
monopole in the large a limit belongs to a small representation of N = 2. Since 
the number of states in a representation cannot change abruptly, the monopole 
will stay in a small representation for any a. 

If one wants to rotate the solution (194) to the U gauge (185), the gauge 
transformation diagonalising the Higgs field can only be continuous everywhere 
except on a line from the origin, the position of the monopole, to infinity [5], [10]. 
Otherwise the topological winding number (190), which is just constructed to be 
gauge invar~ant would be changed. So, the 't Hooft Polyakov monopole acquires 
a Dirac string and a singularity at the origin which give rise to a violation of the 
Bianchi identity of QED in the U gauge. Nonetheless, and in contradistinction to 
the Dirac monopole case, the BPS monopole has finite energy, and the magnetic 
field strength remains finite even at its centre. Hence, the solution cannot be 
rotated to the U gauge by a nonsingular gauge transformation. 
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D y o n s  Monopoles carrying electric charge as well are dyons  and can be construc- 
ted as above, when one includes the electric field term f@x ~ - r ~  2 in (192) and 
supplements the ansatz (194) with one for the zero component of the gauge field 
which yields the electric field, E~ = - 0iA~), 

X ~ 
A~ = --~_~J(r) . (199) 

gr-  

In this case the field equations 

r ~ K  '' = K ( K  2 - 1) + K ( H  2 - j2) 

r 2 J  " = 2 J K  2 , r 2 H  " = 2 H K  2 
(200) 

are solved by 

K ( r )  - gar  
- s i n h g a r  

J ( r )  = s i n h T [ g a r c o t h ( g a r ) -  1] 

n ( r )  = c o s h T [ g a r c o t h ( g a r ) -  1] 

(201) 

(again a > 0; 7 is an arbitrary constant) and yield as mass for the stable dyon 
of electric and magnetic charge one 

Mdyon lal cosh2 7. (202) 
g 

As will be seen from the next paragraph, in the small coupling limit, which by 
asymptotic freedom (cf. a following section on the perturbative regime) is also 
the classical limit, one should set 

g2 
c o s h 2 7 - + l + ~  f o r g ~ O  (203) 

to obtain 

M d y o n = X / 2 g l a l  1÷  \g22  (204) 

Again, the dyon saturates the Bogomolnyi bound and relation (95) for particle 
masses in short SUSY representations. 
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Electric Charges and Dyons The first term in the expression for the central 
charge (182) counts the total number of electric charges minus anticharges ne in 
classical QED, as can be seen from GauB's law 

Oqi-,~ "em = ,qPe , (205) 

Pe being the electric charge density, so that classically 

Z = V~9a(ne + Tclassnm ) , "/'class :---- 
4ri (206) 92 

Witten [15] found that the electric charge of a monopole doesn't have to be 
integer in a theory which allows for a nonzero CP violating 0 vacuum angle. The 

angle of the original non-Abelian theory is irrelevant, because of the presence 
of massless fermionic fields ~pi and the U(1) anomaly [5], [10]. 

Nonetheless, the effective low energy theory, which must be given by the most 
general N = 2 supersymmetric QED Lagrangean due to above considerations, 
does have an additional term 

f--4 ,'~ern hem Oemg 2 fd4~. £/~upapempem oemg2 J ( l  X/~i Di (207) 

incorporating an effective 0em angle. The effective action represents the exact 
low energy theory. Therefore the effective 0 cannot be rotated away. Because 
the electromagnetic GauB's law is given as the functional derivative of the full 
action (146) w. r. t. A~ m, it now has an additional term 

0emg ) 
OiE~ m = 9 Pe -b ~ OiB em , (208) 

which is nonzero in the presence of monopoles (190). Integration therefore shows 
that the electric flux at infinity is not necessarily an integer because of 0 em. 

/d3 x cqi [E~¢ °] ~--- ag(~2e [- ~2---~-: ) (209) 

This is the effect reflected by the arbitrary parameter "y in the dyon solution 
(201), as can be tested by calculating its electric charge from the electric field 

x i 
E~yon -~ - -  sinh ~f for r -~ oo 

9r 3 
4r sinh ~/ 

ne = 92 

(21o) 

In the classical, small coupling limit (9 em= 0), (203) indeed shows that sinh 7 -+ 
g2/4r and hence the electric charge of the dyon (201) is one. 
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Saturat ion  of  the Central Charge As a result of these considerations, the central 
charge (182) is semiclassically given by (redefining ga --+ a as [16] does) 

Z=v~(ane+aDnm) , n e , n m  e 7/ 
( t9 ern 471"i ~ (211) 

with aD := arsd , rsd := \-~--r + g2 ] 

Note that the classically purely imaginary parameter rdass (206) becomes com- 
plex in the quantum theory. 

An at first sight surprising, but very important result is that in the semiclassi- 
cal regime all particles, charged and uncharged, BPS monopoles (198) and dyons 
(202), obey the saturation equation for the Bogomolnyi bound and the relation 
(95) for particle masses of short SUSY representations, i. e. SUSY multiplets in 
which the central charge is saturated: 

M = IZI , Z = v /2 (ane  + aDnm) • (212) 

The parameters a,  aD of the quantum moduli space and the electric and ma- 
gnetic charges of the particles in the physical spectrum determine their masses 
uniquely, and because T is complex, different a yield now indeed different physics, 
as has been expected from the breakdown of the classical U(1)n symmetry. 

To shed more light on (212), consider the number of states before and after 
spontaneous symmetry breaking. First, all fields are massless, and every SUSY 
multiplet contains 2 N -~ 4 helicity states, while for massive fields, after the 
breakdown, one would usually expect 22N = 16 states, cf. the section on repre- 
sentations of the SUSY algebra. On the other hand, one knows [5], [10] that the 
number of degrees of freedom is left unchanged by the Higgs mechanism: The 
electrically charged gauge fields W~ "eat up" the would-be Goldstone bosons of 
the Higgs field and incorporate them as their longitudinal modes, leaving four 
states in the Higgs phase as well. How to resolve this apparent contradiction on 
the number of degrees of freedom? 

The way out is to observe that when the central charge is saturated, i. e. 
the Bogomolnyi bound is reached, one remains with 4 physical states in each 
multiplet even after the spontaneous breakdown of the symmetry, as shown 
above. This is the deeper reason why (212) must be true in the semiclassical 
approximation for all physical particles [9]. 

6.4 The  Full Q u a n t u m  Theory 

It is conceivable that relation (212) will not even be changed by nonperturba- 
tive quantum corrections, when one substitutes renormalized quatities for the 
bare ones. The above semiclassical reasoning may be wrong concerning the exact 
spectrum of particle masses in QCD, but one would trust its answers to qualita- 
tive questions like the number of particle states (four), the representations of the 
symmetry algebrae involved (SUSY) and the structure of the SUSY algebra itself 
in a theory in which SUSY is not broken. This fixes us to the Bogomolnyi bound 
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by the above considerations. Therefore, in SUSY Yang Mills theories in the Higgs 
phase, the classical mass spectrum does not feel any quantum corrections and 
(212) is an exact result of the quantum theory. Nonetheless, one expects that 
relation (211) between a and aD, which has been obtained semiclassically, has 
to be given up due to quantum corrections. 

So, (212) remains valid, showing that particles without electric and magnetic 
charge (the photon and its N = 2 superpartners) are massless even beyond 
perturbation theory. 

We start our discussion of the full quantum theory by enumerating the physi- 
cal parameters which distinguish the theories. Classically, we have a dimension- 
less coupling constant, a microscopic 0 parameter and the the modulus a. The 
theory is asymptotically free, the coefficient of g3 in the B-function being - 4  
(this will be derived later). Therefore, through dimensional transmutation, the 
coupling constant is traded for a scale (e. g. a or u) in which all the dimensional 
quantities are measured but otherwise does not have any dynamical significance. 
Due to the presence of massless fermions the 0 parameter can be rotated away. 
By doing a chiral change of variables of the fermionic field, through the axial 
anomaly a term with the same structure as the 0-term is produced. 

As a consequence, physical quantities depend on one complex parameter, 
corresponding to the classical a. The exact definition of this renormalized, di- 
mensional (measured in the unit specified above) complex parameter is conven- 
tion dependent. We will discuss it in the following, but first turn again to (212) 
determining the mass of the particles. 

6.5 The  Dual i ty  Group  

Two more properties carry over from semiclassics to the full quantum theory. 
The first one is that the 0 em vacuum angle of the effective theory can only be 
defined modulo 2~r and so a shift 

0 em -+  0 e m 4 - 2 7 r m  , m @ ~ '  
(213) 

i.e. T-+T+m , a D - - + a D + r a a  

must be a symmetry of the spectrum as well, 

Mo,m = Mo,,~+2rrn , (214) 

which implies that one has to redefine what one considers to be the electric and 
magnetic charge of a particle. 

ne --+ ne -- mnrn , nm -+ nm (215) 

In the absence of magnetic monopoles, this symmetry is void. 
Introducing the two vectors 

(:o) 
n : =  , v : =  : M = ~ l n . v ]  , (216) 

'n, e 
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the mass formula (212) as well as the formula for the central charge (211) is 
invariant under any transformation 

n T --~ n T A  - 1  v ---> A v  (217) 

where the invertible 2 x 2 matr ix A has to have integer entries in order to map 
arbitrary n into vectors with integer entries. Therefore det A, det A -1 E 77\(0), 
and with det A -1 = 1 / d e t  A, A has determinant ~:1 and hence must be a member 
of the product of the group of linear matrices with integer entries and unit 
determinant, SL(2,77), generated by 

withTm_- (101) , T' T-m=ll, mEW 
(218) 

and the two element group 

{~' 1 0 ) " (219) 

T m implements the transformation (213/215) of the ~em angle, showing again 
that  its entries must be integers. 

The second element of the two element group can be ruled out to be a 
physically relevant transformation of the theory: It maps Tscl ~ ~ as can T8¢1 

be seen from (211) and hence violates the constraint tha t  physical coupling 
constants must be real because of unitarity, 

g2_>0 , I m r ~ 0  . (220) 

The matr ix  S interchanges electric and magnetic charges, 

n m  ~ - - n  e , n e  --~ 72 m 

a D  ~ - - a  , a - +  a D  
1 

i .e .  T---~---- , 
T 

(221) 

and is compatible with the positivity constraint (220). It implements the other 
property of the quantum sector which is extremely important:  D u a l i t y .  

Consider first the classical theory: Since one knows that  the effective low 
energy theory allows for monopoles and dyons, Maxwell's equations read 

0]•pem a ~  ~7,ern * c l a s s  - m  (222) 
- ~,v : _ g j e  , v - # v  ~ - -  --gin Jv 

where ^class _ 4~ j e J m  is the electric/magnetic current four vector, and F ~  * = Ym - -~-" 
1 po" b-~em 5¢~,v ~ pc, is the dual field strength tensor. The second equation replaces the 
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naive Bianchi identity of QED. Dirac was the first to notice that these equations 
remain unchanged under the replacement 

, 

(223) 

gJ~z - ~  gmJ~ n , gmJ~ n -+  - -9J~ 

where the minus sign is necessary because (F~ m *)* = - t ;~ m. This interchange 
eIn of what one calls electric and magnetic fields (E~ m ~ Bem , Bem --+ - E  i ) and 

currents is called duality transformation. It interchanges also the role of electric 
and magnetic coupling constants by reversing as in (221). Therefore, S maps the 
sector of small electric coupling g to one of large magnetic coupling constant 4~ 9 
and vice versa, and interchanges the role of fundamental particles and solitons. 
Hence it is not a symmetry of the theory, it merely shows the same theory in a 
different picture: For example, strongly interacting electric particles will better 
be described by weakly interacting monopoles and dyons. 

In order to deepen the understanding of duality in a quantum theory, to stress 
once more that it is not a symmetry and to prepare calculations in the following 
sections, we discuss now the basic features of eletcromagnetic duality for the 
path integral in the simplest context, i.e. the free Abelian theory. Consider the 
Maxwell Lagrangean 

1 
£ - Fu~F u~ (224) 

4g~ 

where Fu~ = OuA~ - O~A t, and g2(x) is an x-dependent coupling constant. The 
generating functional Z is given by 

Z = / D A e x p  (i f d4x£) (225) 

Using the properties of Gaussian integration, one can alternatively represent Z 
as  

Z = / D A ~ / 7 ) G u v  exp ( i / d 4 x  [1[-2 Gt'vFuvg2(x)GuvGuv])+ T (226) 

Integrating first over A~ we obtain a 5-distribution 

5 (OUGt,~) , (227) 

whose solution is 
Gt,~" = ~t,,w,, OP B" , (228) 

where Bp is a "magnetic" gauge potential. Therefore, the generating functional 
has the alternative expression 

Z = DBp exp - i  d4x ~ (OoB~, - OaBp) (OPB a - OaB p) (229) 
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Introducing sources, we can easily prove that in gauge invariant correlators the 
electric and magnetic fields are interchanged in the two pictures, i.e. 

F ~  = E ~ p ~ O P B  ~ . (230) 

The coupling constants have also a simple transformation rule interchanging 
weak and strong coupling as above, however the relation between the potential 
A~ and Bp is extremely nonlocal. 

The simple calculations above show again the special features of the duality 
transformation distinguishing it from a physical symmetry. The "electric" and 
"magnetic" photons do not form a multiplet but give two equivalent pictures of 
the same physical content. The same features can be seen also in the operatorial 
formalism. If one works in the Ao = 0 gauge, the potentials Ai and the electric 
field E~ are conjugate variables and the physical Hilbert space is constrained by 
the Gaufl law V • E --- 0. The physical, transverse photons are created by the 
magnetic field B. Under a duality transformation, g and B are rotated into 
each other, (223), and the Gaufi law and the V • B -- 0 operatoriai equation 
are interchanged. The physical Hilbert space of transverse photons remains the 
same and both dual pictures are realized on it. 

In the presence of matter, the generic situation remains analogous to the 
one described above. The duality transformation gives equivalent descriptions 
in electric or magnetic languages of the same physical content. Electric and ma- 
gnetic charges of matter should be interchanged simultaneously with the change 
from electric to magnetic photons in the quantum theory. Electric charges and 
monopoles cannot be the fundamental particles simultaneously, i.e. in the same 
picture. 

In very special situations (like e.g. N = 4 SUSY gauge theories) it could 
happen that in a given picture one has both electrically charged particles and 
monopoles present. Then the duality transformation could relate their properties, 
acting in this sense as an o r d i n a r y  symmetry. 

Duality is therefore an extremely powerful tool to connect weak and strong 
coupling sectors by redefining what one considers to be the fundamental field: 
Electrically charged particles which couple locally to photons or magnetically 
charged particles which couple locally to "magnetic" photons. 

To conclude, the physically relevant group under which the central charge and 
mass formula (212) remain invariant, called the ( fu l l )  d u a l i t y  group,  is expected 
to be SL(2,Z), inducing 

v--+ v and T--+ 
CT + d  

with a d  - bc = l , a,  b, c, d E T/ . 

(231) 
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7 Towards a Solut ion  of P u r e  N = 2  SUSY Q C D  

This chapter gives an introduction to the line of arguments Seiberg and Witten 
[16] proposed for a construction of the complete mass spectrum of the quantum 
theory. 

7.1 The  Effective Theory  

In the Seiberg-Witten approach, exact statements are made about the quantum 
effective action of the massless degrees of freedom. 

As we discussed above, for large moduli the semiclassical approximation is re- 
liable. We know, therefore, that the model is in the Higgs phase, i.e. the massless 
degrees of freedom form the N = 2, U(1) gauge supermultiplet. The multiplet 
contains, in a N = 1 notation, the gauge superfield W~, and a chiral superfield 

The effective Lagrangean represents the exact interaction of these massless 
degrees of freedom, and it is formally defined as the generating functional of 
the one particle irreducible Green's function involving these fields. The effective 
action respects all the non-anomalous symmetries of the theory, and knowing it, 
one has solved the theory. Clearly, if at some value of the modulus additional 
massless fields appear in the theory, the action should be changed, i.e. such points 
represent singularities in the modulus-space. The understanding of these points 
and therefore of the phase structure of the theory is one of the main results of 
the Seiberg-Witten approach. 

The effective action is an infinite expansion in the derivatives of the fields. 
Seiberg and Witten limit themselves to terms containing at most two derivatives, 
motivated as follows. 

The demand for perturbative renormalisability allows only terms in the ef- 
fective action with not more than two derivatives and at most a four fermion 
interaction. The high symmetry constrains the vector multiplet part of the N = 2 
SUSY QED effective Lagrangean to depend only on one single holomorphic func- 
tionof the N -- 2 vectormultiplet ~P~ [17] 

£e~ = l lm /d20 /d2O.~(~) , (232) 

or in terms of the N=I chiral multiplet • and vector multiplet W ~ which make 
up ~Pa 

/:err = Im d20 7 ~ WaW" + d20 d2~ - - ~  ~ " (233) 

Here, in line with redefining the Higgs field ¢ to include the coupling, 9 was 
absorbed into the definition of V, • and W a. The prepotential jr(~) is a gene- 
ral holomorphic function. The relation between the first ("gauge") and second 
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("K~ihler") term in (233) is a consequence of N = 2 SUSY. It can be easily pro- 
ven by requiring that  the interaction between the scalar field and its fermionic 
partner (coming from the first term) will be related by the SU(2)n symmetry 
to the interaction between the scalar and the photino coming from the second 
term. 

The effective action (233) has a flat direction: j r  can be expanded around an 
arbitrary complex value of #, a. This represents the exact, quantum definition 
of the modulus, i.e. (233) represents the effective action for the full moduli 
space of the theory. The knowledge of jr(#) gives simultaneously the information 
about the moduli dependence of the effective action and for a fixed modulus the 
dependence on the chiral superfield expanded around the modulus. 

To calculate the masses (212), it is enough to construct a and aD, which Sei- 
berg and Witten show to be possible from the knowledge of the global properties 
of jr. The astonishing fact that  these can be determined from the low energy 
effective theory at points at which certain fields become massless, as will be seen 
in the next section, is intimately connected to the fact that  .T is holomorphic. 

Using the semiclassical Lagrangean (173), we read up that  

Ojr~cl ~=~ ajrsd = Vscl#e v = a'rsd = aD 
a #  ' 0 #  ( 2 3 4 )  

a2"T'sc! e=a = 
0# 2 rscl • 

Together with the mass formula (212) 

0jr  I n m ) ,  (235) 

i 

M =  IZ ] , Z =  v/2(ane + - - ~  .~=. 

it is evident that  in the full quantum theory 

02:7= ~=,  
r(a) := 0~  2 

Im r(a) - .  41r O~(a)  (236) 
g2ff(a ) , Re T(a) =: 2 .  

• =a  0aD O-~cla~s and hence - -  = r 
aD(a) .-- 0~  Oa 

plays the r61e of the effective coupling constant in the Abelian theory, i.e. deter- 
mines the (effective) 0e~ angle and coupling geff in the quantum theory. 

We stress that  all physical quantities will depend only on the complex para- 
meter a. 
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7.2 D u a l i t y  in t h e  E f f ec t i ve  Q u a n t u m  T h e o r y  

Next, we discuss the duality properties of (233), i.e. the various transformations 
which relate effective actions with different ~'(#) without changing the physical 
content of the theory. We start  with the transformation which generalizes the 
electro-magnetic duality to the N = 2 SUSY situation. Defining 

02 = 
~D = h(~) := 0~  ' (237) 

we see from (229) that  the second term in (233) transforms as 

1 d~D W a W a  --+ (238) 
dr' ---ff~D WD''~W~) " 

dr'  

In the same notat ion the first term in (233) can be written as 

Im (OD #---) , (239) 

which is the same as 

- I m  ( 4 ~ # D )  

Therefore we showed that  there is a transformation of variables 

Wa --+ WD,c, 

~D "-+ --4i --= - h - 1  (~liD) 

~lf--+ #D----- h(4~) , 

(240) 

(241) 

Another transformation which leaves the physics unchanged is changing # o  -- 
h(#) by a linear term in # with real coefficient, i.e. 

#D --~ 4~D + b # (243) 
# ~ #  . 

Then the first term in (233) is changed by 

Im (b # ~---) , 

:) (:o) 

which gives a new effective action equivalent to (233). 
The physical content is not changed if the function h is replaced by the 

function - h  -1. Even though the independent information is expressed in terms 
of the change of one function, it is more convenient to t reat  • and ~D -- h(4~) 
in a symmetric fashion as a doublet, as has been done for a and aD in (216). In 
this way the transformation is expressed as 
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while the second is changed by 

b lm ( /d2O W,~W c') ..~b F~,,F ~" (244) 

Prom (233) we see that b changes ~eff- In an Abelian theory, (233) is a total 
derivative which cannot get contributions at infinity. However, when monopoles 
are present b has a physical influence since it shifts the charge of the monopoles. 
Therefore the transformation (243) leaves the physics invariant only if b is an 
integer and the transformation is accopanied by relabelling of the monopole elec- 
tric charge. These legal transformations are in accordance with (218) generated 
by 

The 2 x 2 matrices appearing in (242) and (245) generate the full SL(2,Z) group 
of 2 x 2 matrices with integer entries and unit determinant, which is therefore the 
duality group of (233), and so one has shown that the duality group of Sect. (6.5) 
survives also in the quantum theory. 

An important point related to duality is the exact definition of the central 
extensions in the N = 2 SUSY algebra. Using (233), one can calulate the ge- 
nerators of the algebra and their commutation relations. One expands around 
a value a of the modulus and defines aD : :  h(a). Then, repeating the calcula- 
tion of Sect. (6.3), the electric and magnetic charge contributions to the central 
extension are normalized by a and aD respectively. In particular if the massive 
fields are added to the effective action, for a short multiplet the mass will be 
given by (the coupling is absorbed in a and aD) 

M = v"21 nea + nmaD ] (246) 

where ne, nm are the electric and magnetic charges carried by the multiplet. This 
result, being algebraic, is exact. Equation (246) gives a definition of the quantum 
modulus a and of aD through an actual physical measurement. 

As seen in Sect. (6.5), in the presence of charged matter a duality transfor- 
mation requires also a relabelling of the charges of the matter fields in such a 
way that the physics remains unchanged. Prom (246) it follows that if (~, ~D) 
transform according to a SL(2,7]) transformation M, 

the electric and magnetic charges should be relabelled according to 

() n m  _.~ M - 1  T (248) 
n e  n e  ' 

where M T is the transpose of M. Therefore, the same theory characterized 
by a point in the moduli space can be described by different looking effective 
Lagrangeans accompanied by matter fields having different charge assignements. 
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The deep and surprising observation by Seiberg and Witten is that the afo- 
rementioned ambiguity in the description is a necessary feature of the N -- 2 
SUSY gauge theories. This class of theories have monodromies, i.e. there are 
closed paths in moduli space for which - when one returns to the initial point 
- one finds the effective action written in a different picture. The existence of 
monodromies is a mathematical consequence of the existence of singular points in 
moduli space in the functions ~-(~) or h(a). A general argument for the existence 
of singularities follows from (220), 

4r  
92 = Im dh(a) > 0 . (249) 

eff da - 

The imaginary part of an analytic function cannot have a well defined sign 
unless it is a constant (which would correspond to the classical theory). Since 
there are quantum corrections, h(a) must have singularities in order to fulfill the 
inequality. 

7.3 A M o n o d r o m y  a t  Inf ini ty 

An explicit example of the appearence of monodromies is obtained if we take 
a closed path which stays all the time in the region where the modulus has a 
large absolute value. In such a domain, due to asymptotic freedom, perturbation 
theory is reliable and - the theory being N = 2 SUSY - there is an important 
non-renormalization theorem [17]: In SUSY N = 2 QED and QCD, the one loop 
calculation yields the exact result to every order in perturbation theory. Because 
of the high symmetry, fermionic and bosonic divergences cancel exactly beyond 
one loop. Furthermore, the result is uniquely determined by the transformation 
properties the effective action has to have in order the U(1)~ to be broken with 
the right remaining 774 symmetry: 

~rcla~sk0 l + ~ l n ~ - ~  + Z F k  (250) 
k = l  

The last term comes from possible nonperturbative k instanton contribution 
which drop out in the classical limit, as does 0em(u -4 ~ )  --4 0. 

To get a feeling for this result, calculate the effective coupling r from (236) 
for ]ul, ]a I ~ oo 

0.T- I [ (  92 a 2 ] aD(a) = ~ --~ aTc,a~s 1 + 4~2) + ~ l n ~ - ~  (251) 

~mu, 

whose imaginary part gives the running coupling 

ge~(a--- ~ --+ ~- 1 + ~ 3 + In )-7 for [al ~ (253) 



Introduction to Supersymmetry 265 

and renormalization group beta function 

1 3 for lal-  oo . (254) 

This is the expected result of the beta function of SU(2) QCD with two Weyl 
fermions A, ¢ and a complex scalar ¢ in the adjoint representation of the gauge 
group, cf. [10], Chap. 10.1. 

The expression for h(a)  is 

~D--h(~)=-- iO l + l n  (255) 

In the large I @ I domain, ~2 is the gauge invariant quantity. Therefore 

= p exp (ia) 0 < a < 7r p fixed, large (256) 

represents a closed path in moduli space. On such a path, using (255), the change 
will be 

~D ~ --~D -- i~ i 27r = --~D -{- 2~ 7r (257) 
-~ -@ . 

Therefore, there is a nontrivial monodromy around infinity represented by the 
matrix 

( - 1  2 ) = S 2 T _  2 (258) Moo := 0 - I  

It is indeed a member of the duality group under which the theory is invariant. 
Although we already know that in the classical limit only the particles wit- 

hout electric and magnetic charge are light and describe the long range behavior 
of the theory, it is instructive to re-derive this result: The electric and magnetic 
charge of the massless particles must be unaltered by the monodromy, so that 

n T " n T M ~ o  I ==¢, n = 0 , (259) 

as expected. 

7.4 Branch  Poin ts  at  F ini te  u 

Assuming that the moduli space has only isolated singularites, there are regions 
in moduli space free of monodromies. This requires that, besides infinity, there 
are other singular points with monodromies M~ in such a way that 

n 

H M, : Moo. (260) 
i=1 

The physical origin of a singularity at a finite value of the modulus is the ap- 
pearence of another massless state. Therefore, one should study the influence on 
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the effective action (233) of mat ter  multiplets with various charges, when their 
mass approaches zero• 

Their  electric and magnetic charge ni can again be determined by the mon- 
odromy, 

n~ ~' n~M~ -1 (261) 

Furthermore,  with ui also - u i  must be a branch point because of the residual 
7/2 symmetry of broken U(1)~. 

E l e c t r i c  C h a r g e  B r a n c h  P o i n t s  We start  with a multiplet carrying electric charge 
1. If the highest spin in the multiplet is not larger than 1/2, such a multiplet 
will necessarily be short, and its mass will vanish for a --+ 0 as a consequence 
of (246)• In this case, we are dealing with an N = 2 SUSY extension of QED. 
Since QED is infrared free and the vanishing mass represents exactly the infrared 
limit, a one loop calculation of the effective action is reliable• Through the Ward 
identity, the running of the effective coupling constant T(a) is reduced to the one 
loop correction to the photon propagator due to the mat ter  circulating in the 
loop• The result of the calculation is 

T(a) = ____i In 

Integrating once, we obtain 

m i a 
- In -- . (262) 

A ~r A 

aD :-- h ( a )  = - a l n  ~ + • . 

If a circles the singular point a = 0, the transformation is 

aD --+ aD + 2a 
a - - 4 a  . 

(263) 

(264) 

Therefore, the monodromy matr ix corresponding to a multiplet with charges 
n --- (nm, ne) -- (0, 1) becoming massless is 

If instead of charge one, we have a field with an electric charge q, the off-diagonal 
element in (265) is multiplied by q2. It is clear from (265) that  the presence of 
only electrically charged multiplets of this type cannot satisfy (260). The above 
discussion does not include the possibility that  al l  the gauge bosons become 
massless i.e. that  the full SU(2) symmetry is restored at some point in the 
moduli space. The existence of such a "non-Abelian Coulomb phase" is highly 
implausible. 

There is only one point, a = u = 0, in the classical moduli space at which the 
gauge symmetry  is "restored" and all gauge bosons with their superpartners are 
massless, yielding a possible monodromy, but  Seiberg and Witten give arguments 
that  it will disappear in the quantum moduli space due to quantum corrections. 
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That u = 0 is the only branch point can be ruled out for mathematical reasons: 
In that case, u would be single valued everywhere, and T(a 2) analytic; Im T had 
to be harmonic, reaching its minimum only at infinity and therefore changing 
sign, which clashes with the need for a real coupling (220). 

Therefore, at least two more singularities at points ux ~ 0, u-1 = - u l  are 
necessary for a consistent solution, and Seiberg and Witten show that two are 
also sufficient. 

The Monopole Branch Point and Confinement Note first that for a ¢ 0 the char- 
ged gauge bosons and their superpartners are massive (211). Even without above 
considerations, we expect therefore the collective excitations, which we found in 
the semiclassical analysis, to become massless: Monopoles for a ¢ 0, aD = 0, 
and dyons for ane + a D n m  = 0 for some ne, nm ~ 0. 

One is thus led to the conclusion that at least some of the singular points 
are related to fields carrying magnetic charge becoming massless. Such objects, 
monopoles and dyons, exist in the theory for large a. We calculate now the mon- 
odromy matrix corresponding to a point in moduli space where the monopole 
becomes massless, i.e. aD --4 0. Such a calculation can be easily done using dua- 
lity: We first do an electromagnetic duality transformation (242) to an electric 
picture. Now we can use the result of the electric calculation (265) and after that 
we transform back to the original picture using the inverse of (242). As a result, 
the monodromy matrix for the monopole is becoming the conjugate of M(o,x) of 
(242): 

Under a small perturbation, a point where the magnetically charged object be- 
comes massless leads to the condensation of these objects. When a magnetically 
charged field has an expectation value, the electrically charged fields are confined 
by a dual Meissner effect. 

In type II superconductors, Cooper pairs (pairs of electrons) are the analogue 
of above magnetically charged objects. Cooper pairs condense, hence have a 
nonzero vacuum expectation value, and by that confine magnetic fields which 
try to penetrate the solid to a flux tube of very small diameter. The ends of 
this "string" lie on the surface of the superconductor and can be interpreted 
as magnetic charges. Since the magnetic photon has only a small penetration 
length, it can be said to have become very heavy and hence unobservable. G. 
't Hooft and S. Mandelstam [18] suggested that the QCD vacuum confines the 
colour electric charges by a dual mechanism: Here, magnetic charges condense 
and confine the colour electric fields to small tubes between the quarks. 

Since the existence of singular points corresponding to particles carrying 
magnetic charge becoming massless is a necessity in N = 2 SUSY gauge theories, 
Seiberg and Witten show the presence of this mechanism of confinement in four 
dimensions at least for this class of non-Abelian gauge theories. 
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The Dyon Branch Point The monodromy (266) does not represent by itself a 
full solution of the singularity structure since it does not satisfy (260). Postula- 
ting another singular point one obtains a plausible minimal solution. If the new 
singular point has monodromy M' ,  the matr ix  can be calculated from (260), 

We can calculate the charges of the field whose vanishing mass produced M '  by 
(261) or equivalently by calculating the matr ix  X which conjugates M(0,1) to 
M' .  The result is 

( - 1 2 1 )  (268) X :  1 

The matr ix  X transforms the theory in the presence of the new object to an 
electric picture with a field with charge C 0,1) present. Using (248) we conclude 
that  the charges of the new object are ( 1 , - 1 ) ,  a dyon, and therefore the new 
singular point in the moduli space is characterized by 

- -  a + a D  : 0 .  (269) 

The ~2 non-anomalous symmetry  takes the point aD : 0 and (269) into each 
other. 

7 . 5  S o l u t i o n  a n d  C o n c l u s i o n s  

Once the singularity structure in the moduli space is guessed, the solution of the 
infrared behavior is reduced to a well defined mathematical  problem. One has to 
calculate the function ~ or alternatively, since it contains the same information, 
the function aD ---- h(a). It is convenient to t reat  the problem in a symmetric 
fashion by parametrising a, aD in terms of a variable u, a(u) and a D ( U ) .  Elimi- 
nating u, aD as a function of a can be recovered. The constraints on a(u), a D ( l Z )  

we have derived are summarized as follows: 

- The functions should have three singular points a -- oo, aD = 0 and - a  + 
aD ---- 0 with monodromies Moo, Mo,0 ) and M'  respectively. 

- Following from (249), 

Im daD dad = Im du > 0. (270) 
da d___a -- 

d u  

These requirements fix uniquely the functions a(u), aD (U) up to reparametrisa- 
tion of u. The solution involves the mapping of the physical problem into the 
problem of calculating the periods of an elliptic curve. The solution is given in 
a parametrisation where the singular points are at u = 1 , - 1 ,  c¢, 

1 u 

a = - -  aD = dx , (271) 

--1 1 
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and (212) yields the exact spectrum. 
We discuss now further the implications of the results for the understanding 

of confinement. The exact result produces just two isolated points (u = ±1) 
where the monopoles and the dyons become massless, respectively. In a N = 2 
SUSY framework we cannot go beyond these points. If we break N = 2 to N = 1, 
however, we can penetrate into the phase where the monopoles (or dyons) are 
condensed. Consider e.g. the perturbation m tr 4 ~2 to the original Lagrangean, 
where ~ is the chiral multiplet in the adjoint representation. Near the point 
in the moduli space where there are massless monopoles for m = 0, the exact 
superpotential in the magnetic picture is 

W = V ~ D M J ~ / +  rnV(~D) , (272) 

where M, h:/is the monopole multiplet and the first term is required by N = 2 
SUSY. The vacuum is obtained by minimizing (272) supplemented with the 
D-term condition 

IM[ = [MI. (273) 

The equations are 
dU 

v MM + md- D = 0 (274) 

~DM = ~DM = 0 , (275) 

which have as solution 

1/2 
M = M =  [ m dU . (276) 

\ V/2 d~D #D=0/ 

Therefore the monopole field has a vacuum expectation value, i.e. from the point 
of view of the effective theory the system is in a magnetic Higgs phas e. Through 
the dual Meissner effect [18], electric lines are expelled from the system. If +q 
external charges at a distance d are coupled to the system, the electric flux lines 
will be forced to join the charges on the shortest path i.e. the interaction energy 
will increase linearly with d, yielding confinement. 

We remark that the monopoles which condense are U(1) monopoles, i.e. they 
will confine any particle having a non-vanishing Abelian charge. In this respect 
this mechanism seems different from the expected 7/N monopole confinement 
which would confine just particles with the nontrivial transformation proper- 
ties under the center of the SU(N) group. However, it is clear that there is no 
phase boundary between regions where the two apparently different confinement 
mechanisms act. This is related to the fact that in four dimensions we cannot 
find a gauge invariant order parameter which would distinguish between the 
condensation of the two types of monopoles. 

As a summary, the quantum moduli space of N = 2 SUSY SU(2) Yang Mills 
theory must have at least three branch points. The minimal solution consists 
of a moduli space in.which three different kinds of particles become massless at 
certain points: 
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(i) At lul = oc, in the perturbative region, monopoles and dyons are heavy and 
become unobservable. 

(ii) About some point ul ,  monopoles are light and act as mat ter  in dual N = 2 
SUSY QED. They are local and stable. Electric charges are confined by the 
dual Meissner effect if monopoles are condensed, requiring an N = 1 SUSY. 

(iii) At u-1 = -U l ,  dyons become massless. 

On the other hand, one should stress that  a series of (very plausible) assump- 
tions was made to arrive at this result: 

- The Bogomolnyi bound (212) was assumed to hold non-perturbatively; 
- Monopoles, dyons and the fundamental fields were assumed to be the only 

physical particles, and no new particles would arise in the quantum theory; 
- The duality group is a invariance group of the quantum sector (This is proven 

if the path integral analogue of the dual transformation has no undiscovered 
pathologies.); 

- Only massless particles can yield logarithmic behavior and hence branch 
points in the non-perturbative regime, at finite u. 

In the end, we should keep in mind that  the applicability of N -- 2 SUSY 
pure SU(2) gauge theory to the real world is unfortunately limited, a fact ack- 
nowledged even by the most ardent of SUSY supporters: 

- In the real world, supersymmetry (if it is a physical symmetry at all) is hea- 
vily broken, since we observe no supersymmetric partners to e.g. gluons. But 
then the Bogomolnyi bound (212) is invalidated, and no universal relation 
between masses and charges of the observed particles is known. Although e. 
g. all quarks have the same colour charge, their masses differ very much. 

- Supersymmetry being broken, we lack the Higgs field ¢ in the adjoint repre- 
sentation of the gauge group, whose fiat directions proved so vital and which 
"broke down" the gauge symmetry.  The Higgs mechanism was essential to 
determine the effective low energy theory which was used to solve the model. 

- A non-renormalisation theorem for the effective low energy theory, as well 
as for full QCD is not at hand. 

The generalization to supersymmetric QCD with arbi t rary number of colours 
and flavours and both massless and massive quarks has been performed as well 
[19]. Here, chiral symmetry  breaking could be demonstrated besides the exact 
spectrum. 

These notes follow loosely the lectures given by A. Schwimmer of the Weiz- 
mann Institute at Rehovot, Israel, at the workshop "Nonperturbat ive QCD", or- 
ganised by the Graduiertenkolleg Erlangen-Regensburg on October 10-12, 1995 
in Kloster Banz, Germany. We thank him for a critical reading of the manuscript 
and an extensive revision of the last two chapters. 

A more thorough introduction into the work of Seiberg and Witten may be 
found in [20] [21] [22]. There is no need to remind the reader tha t  the subject 
evolves rapidly. 
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